OSSIR Groupe Sécurité Windows

Réunion du 2 avril 2007

Sécurité Windows Vista Premiers retours d'expérience

Olivier REVENU EdelWeb olivier.revenu (à) edelweb.fr

Nicolas RUFF EADS-IW nicolas.ruff (à) eads.net

Plan

- Introduction
- Principes de développement
- Revue des fonctions de sécurité
- Bilan
- Attaques connues
- Attaques possibles
- **■** Conclusion

Introduction

- Vista : le système phare de Microsoft en 2007
 - A venir: Longhorn (2008), Vienna (2009), ...
- Un système considérablement modifié
 - Vendu pour son interface graphique
 - Mais les changements sont sous le capot
- Des paradigmes de conception actuels
 - Sécurité (contre les malwares et le phishing)
 - DRM (contenu protégé et HD-DVD)
 - Lutte contre le piratage logiciel
 - Connexion permanente avec Microsoft
 - Ex. technologies P2P et IPv6 natives
 - Etc.

Principes de développement

■ Réécriture du code

- Exemple de parties sensibles réécrites
 - Pile TCP/IP (double pile IPv4 / IPv6 native)
 - Protocole SMB (version 2, avec support IPv6)
- Nouveaux protocoles développés from scratch
 - Ex. LLTD, PNRP, LLMNR, PNM

■ Sécurité intégrée dès la conception

- Secure Development Lifecycle (SDL)
 - Développeurs sensibilisés
 - Revue de code
 - Outils de développement sûrs
 - Surface d'exposition minimale par défaut
- A prouvé son efficacité sur SQL Server 2005
 - Aucune faille connue à ce jour

Principes de développement

- Limitation des privilèges "par défaut"
 - L'utilisateur n'est plus administrateur
 - Notion de "sudo" (comme sous Unix): User Account Control (UAC)
- Niveaux d'intégrité sur les processus
 - User Interface Privilege Isolation (UIPI)

Revue des fonctions de sécurité (1/8)

Support des pages mémoire non exécutables

- DEP: Data Execution Prevention
- A fait ses preuves sous Linux et *BSD
 - Ex. PaX, W^X
- Déjà présent dans Windows XP SP2
 - Mais désormais actif par défaut

Revue des fonctions de sécurité (1/8)

Limites

- Nécessite un processeur récent (~ année 2005+)
 - Technologie NX chez AMD, XD chez Intel
- Technique de contournement connue
 - "Retour dans la libc"
- Peut être désactivé par l'attaquant
 - Simple bit dans le descripteur du processus
 - http://www.uninformed.org/?v=2&a=4
- Automatiquement désactivé si le point d'entrée du programme n'est pas dans une section exécutable
 - Concerne une partie des protecteurs logiciel (packers)

Revue des fonctions de sécurité (2/8)

■ Espace mémoire "aléatoire"

- ASLR: Address Space Layout Randomization
- A fait ses preuves sous Linux et *BSD
 - Ex. GrSec

Limites

- Nécessite une recompilation des exécutables avec Visual Studio 2005 SP1+
- Nécessite que DEP soit activé
 - Aucune justification technique à ce fait
- Aléa déterminé au boot
- Entropie de 8 bits (256 essais au maximum)

Revue des fonctions de sécurité (3/8)

- Pile (stack) protégée par le compilateur (/GS)
 - Déjà présent dans Windows XP SP2, Linux et *BSD (ex. StackGuard, ProPolice)
 - Limites
 - Nécessite une recompilation des exécutables avec Visual Studio 2002+
 - Exploitation possible si une exception est levée avant la sortie de la fonction

Revue des fonctions de sécurité (4/8)

- Tas (heap) protégé par le système
 - Déjà présent dans Windows XP SP2, Linux (glibc récentes),
 *BSD
 - Limites
 - Entropie de 8 bits (256 valeurs possibles)
 - Ne protège pas les applications qui utilisent leur propre gestion du tas
 - Ex. Borland Delphi

Revue des fonctions de sécurité (5/8)

■ Exceptions protégées (SafeSEH)

 Supporté par Windows XP SP2 mais rarement rencontré dans les binaires

Limites

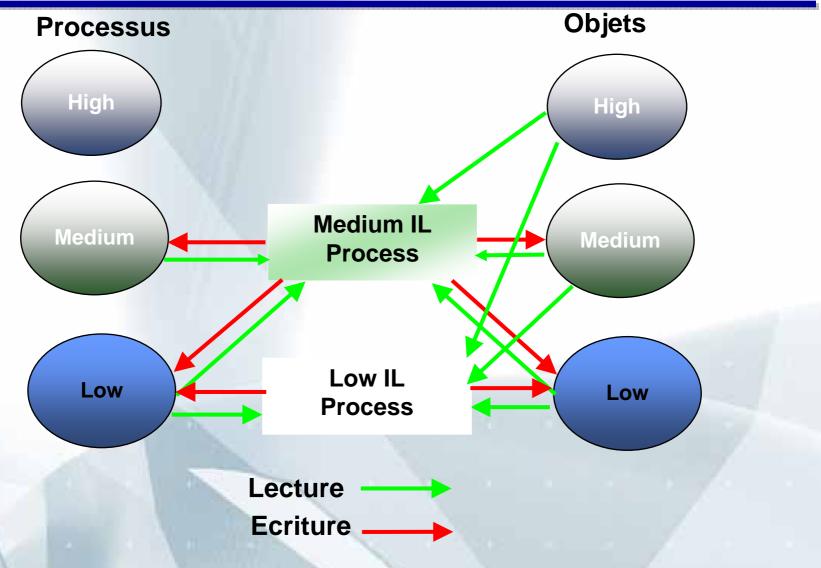
- Nécessite une recompilation des exécutables avec Visual Studio 2002+
- Tous les binaires d'un processus (EXE + DLLs) doivent être protégés
- L'utilisation d'un "trampoline" reste possible

Revue des fonctions de sécurité (6/8)

■ Fonctions traditionnellement dangereuses supprimées

- Exemples
 - printf("%n") n'existe plus
 - strcpy() remplacé par safe_strcpy()
- Limites
 - Nécessite une recompilation des exécutables avec Visual Studio 2005+

Revue des fonctions de sécurité (7/8)


Vérifications d'intégrité

- CI.DLL en mode utilisateur
- PatchGuard en mode noyau
- Limites
 - N'est pas vraiment une fonction de sécurité
 - Imposé par les éditeurs de contenu multimédia
 - Améliore la stabilité du système en bloquant les patches du noyau
 - Non seulement PatchGuard est déjà contourné
 - Mais en plus il est possible de créer un malware indétectable grâce à PatchGuard!
 - http://www.uninformed.org/?v=6&a=1

Revue des fonctions de sécurité (8/8)

- User Account Control (UAC)
- User Interface Privilege Isolation (UIPI)
 - Limites
 - "Ne sont pas des fonctions de sécurité"
 - Mark Russinovitch, Microsoft Corp.
 - Peut être désactivé par l'utilisateur ... et les applications
 - Tout repose sur la décision finale de l'utilisateur (oui / non)
 - Tout programme contenant la chaine "setup" ou "install" ne peut être lancé qu'en mode administrateur
 - L'envoi de messages Windows vers un processus de niveau d'intégrité supérieur est autorisé

Revue des fonctions de sécurité (8/8)

Bilan

■ Aujourd'hui le consensus est le suivant

- Le nombre de failles "triviales" devrait être faible
 - Faille "triviale" = buffer overflow exploitable à distance sans authentification
 - mais la faille "ANI" semble montrer que le code hérité va poser problème encore longtemps!
- Chaque protection prise indépendamment peut être contournée
 - La combinaison des protections rend l'exploitation difficile
 - Cette combinaison ne se rencontre (actuellement) que dans les logiciels Microsoft récents
 - E.g. Vista, Office 2007

Bilan

- Pour la plupart des failles, l'exploitation "universelle" sera difficile
 - C'est la fin des "vers" à la Blaster
- Microsoft a plusieurs années d'avance sur le reste des éditeurs
 - Ex. Oracle, Apple, etc.

Attaques connues

- Code hérité
 - Exemple : faille "ANI"
- Problèmes complexes, non détectables à la compilation
 - Exemple : faille NtRaiseHardError() permettant d'obtenir les droits SYSTEM
 - Combinaison d'une fonction obscure, d'une fuite mémoire et d'un "double free"
- **Problèmes conceptuels**
 - Exemple : contournement de UIPI par envoi de messages WM_KEY
- Détournement de fonctions légitimes
 - Exemple : utilisation de la fonction "commande vocale" par une site Web malveillant, utilitaires d'accessibilité

Attaques connues

Applications tierces

- Pour être pleinement protégée, une application tierce doit :
 - Etre compilée avec Visual Studio 2005 SP1+
 - Utiliser les options /GS, /SAFESEH, /DYNAMICBASE
 - Ne pas être protégée par un packer
 - Ne pas écrire dans les répertoires "Program Files", "Windows", ...
 - Sinon les droits administrateur seront requis

Attaques connues

Applications tierces

- Conclusion : l'écrasante majorité des applications Windows aujourd'hui restent attaquables sur Vista
- Exemple présenté à la conférence RSA Security 2007
 - http://searchsecurity.techtarget.com/originalContent/0,289142,sid1
 4_gci1242436,00.html

Attaques possibles

■ Les applications malveillantes

- Une majorité des virus de messagerie arrive sous forme de pièce jointe exécutable
 - Seule nouveauté : le nombre de "oui" à cliquer (UAC)

Les nouvelles fonctions

- Très nombreuses
 - Découverte de la topologie réseau (LLTP)
 - P2P intégré
 - Gadgets de bureau, incluant de la publicité
 - Etc.
- Peu de maturité

Attaques possibles

■ La connectivité totale

- IPv6 natif ou encapsulé (tunnels) offre une visibilité globale sur Internet
 - Que se passe-t-il si l'utilisateur partage un répertoire … ?
 - Réponse partielle : notion de "profil réseau" (public / bureau / maison)

Les failles noyau

- Sujet de recherches intensives depuis 2005
 - Ex. série de failles dans les drivers WiFi
- Le noyau n'a pas le même niveau de protection que les applications utilisateur
- L'exploitation est délicate ... mais pas impossible !

Conclusion

- Avec toutes ses protections combinées, Vista devrait connaitre moins de failles critiques que ses prédécesseurs
 - Il ne faut pas en conclure que Vista est inviolable
 - D'ailleurs des failles critiques ont déjà été trouvées!
- De nouveaux risques sont à prévoir
 - IPv6 natif, P2P natif, gadgets de bureau, ...
- Il reste à rendre plus sûr :
 - Les applications tierces
 - Les comportements utilisateur
- Et surtout à répondre à la question ...
 - Vista est-il un OS pour l'entreprise, ou pour les particuliers ?

Démos

