
Paper Number 710 submitted to MILCOM 2002, Unclassified

1

Abstract-- The problem of Network Security is approached

from the point of view of Kolmogorov Complexity (see [2] for
background). The principle of conservation of complexity is
utilized to objectively identify healthy complexity norms and
detect attacks via deviation of these norms under TCP/IP.
Observed complexity changes that fall within expected bounds
are indicators of system health, while complexity changes outside
the expected bounds for normal protocol and application use are
indicators of system fault or attack. Experimental results using
FTP normal and attack sessions are presented.

Index Terms— Network Security, Kolmogorov Complexity

I. INTRODUCTION

NITED States military operations have a long and rich
history of exploiting technological advantage and

engraining a deep technical understanding in every operator.
US Navy nuclear propulsion plant operators for example,
understand intimately the physical laws that govern the
operation of their equipment. This proficiency in
thermodynamics and propulsion in our military stands in sharp
contrast to the science of information assurance in commercial
or military operations. For example, it would be entirely
unacceptable if the first indication of a heat exchanger leak in
a nuclear powered ship were someone noticing that a rat had
crawled inside of an empty tank. The operators would have
noticed first a pressure drop, or reduced heat transfer
performance and temperature changes. The leak would have
been identified and corrective action taken long before any
real damage had occurred to the mission or equipment. But
many information security problems go unnoticed until
extreme damage is done and an absurd result finally reveals
the problem after the fact. We lack in the information
assurance domain the physics of information that would enable
operators to apply the same degree of diligence to their
mission critical information networks that they apply to other
mission critical systems.
 Towards the goal of establishing a fundamental science of
information assurance, Kolmogorov Complexity was proposed
in [2] to be a fundamental property of information that can be

Manuscirpts submitted March 8th 2002. The authors are with GE Global

Research Center in Niskayuna, NY. Lockheed Martin Systems Integration
Owego, NY, funded this work, technically transitioning ideas developed
under DARPA Information Assurance and Fault Tolerant Networks Projects
contract F30602-01-C-0182 and managed by the Air Force Research
Laboratory (AFRL) Information Directorate.

used as a basic information parameter from which to build
laws and models of information security. In this paper we
review and expand upon the concepts introduced in [2] by
developing the concept of Conservation of Complexity and
applying it to the TCP/IP network protocol suite.

 The advantage of using Complexity as a fundamental
parameter to monitor system health and achieve information
security lies in its objectivity. Any given string has a
Kolmogorov Complexity without regard to the details of the
system on which it is running. The operating system, protocol
being used, and meaning of the data represented by a
particular string, while related to string complexity, need not
be known in order to measure string complexity. Kolmogorov
Complexity is an inherent property of a string that can be used
to build the science of information assurance in a way that is
similar to role played by parameters such as pressure and heat
in thermodynamics.

This paper applies the principle of conservation of
complexity across network protocols as an objective means to
benchmark normal behavior and detect network attacks. In
order for this paper to be self-contained we briefly review
Kolmogorov Complexity and the principle of conservations of
complexity. Next we discuss the challenges that must be
overcome in order to apply this principle on a network running
TCP/IP. Finally we give experimental evidence showing the
usefulness of this principle and its ability to detect FTP attacks
by monitoring only the complexity of TCP/IP protocol data.

II. BACKGROUND

A. Kolmogorov Complexity

Kolmogorov Complexity (K(x)) is a measure of descriptive
complexity contained in an object or string (x). It refers to the
minimum length of a program such that a universal computer
can generate a specific string. A good introduction to
Kolmogorov Complexity is contained in [1] with a solid
treatment in [4]. Kolmogorov Complexity is related to
Shannon entropy, in that the expected value of K(x) for a
random sequence is approximately the entropy of the source
distribution for the process generating the sequence. However,
Kolmogorov Complexity differs from entropy in that it relates
to the specific string being considered rather than the source
distribution. Kolmogorov Complexity can be described as
follows, where ϕ represents a universal computer (Turing
machine), p represents a program, and x represents a string:

Network Security Through Conservation of
Complexity

Scott C. Evans and Bruce Barnett

U

Paper Number 710 submitted to MILCOM 2002, Unclassified

2

{ })(min)(
)(

plxK
xp =

=
ϕϕ

 .

Random strings have rather high Kolmogorov Complexity –
on the order of their length, as patterns cannot be discerned to
reduce the size of a program generating such a string. On the
other hand, strings with a large amount of structure have fairly
low complexity. Universal computers can be equated through
programs of constant length, thus a mapping can be made
between universal computers of different types, and the
Kolmogorov Complexity of a given string on two computers
differs by known or determinable constants.

The conditional Kolmogorov Complexity, K(y|x) of a string
y given string x as input is described by the equation below:

=∞
= =

yxpthatsuchpnoisthereif

pl
xyK yxp

),(,

)(min
)|(),(

ϕ
ϕ

ϕ

 ,

where l(p) represents program length p and ϕ is a particular
universal computer under consideration.

 The major difficulty with Kolmogorov Complexity is that
it is not computable. The length of any program that produces
a given string is an upper bound on the Kolmogorov
Complexity for this string, but you can’t compute the lower
bound [4].

B. Estimators of Complexity

As discussed above, exact measurement of Kolmogorov
Complexity is not achievable, however various methods of
estimating complexity are available. A natural choice for
estimation of complexity is the class of universal compression
techniques. In [27] Lempel and Ziv define a measure of
complexity for finite sequences rooted in the ability to produce
these sequences from simple copy operations. The familiar
Lempel Ziv 77 and 78 [29], [30] universal compression
algorithms (LZ77, LZ78) harness these principles to yield
compression algorithms that can approach the entropy of an
infinite sequence produced by an ergodic source. Unix
compress, which is based on the LZ78, is used as the
compression estimation algorithm in this paper.

III. CONSERVATION OF COMPLEXITY

 Conserved variables enable one to deduce parameters
from the presence or absence of other parameters. The Law of
Conservation of Matter and Energy for example allows one to
deduce how well a thermodynamic system is functioning
without knowing every parameter in the system. Heat gain in
one part of the system was either produced by some process or
traveled from (and was lost from) another part of the system.
One knows that if the thermal efficiency of a thermodynamic
system falls below certain thresholds then there is problem.
On the other hand, if more heat is produced by a system than
expected, some unintended process is at work. A similar

situation is desirable for information systems – the ability to
detect lack of assurance by the presence of something
unexpected, or the absence of something that is expected. This
seems to be far from reach, given that information is easily
created and destroyed with little residual evidence or impact.

 Since complexity of a given string can only change
through computational operations, it is in a sense a conserved
variable. Suppose the exact Kolmogorov Complexity K(S) of
a string of data S was available. One would essentially have a
conserved parameter that could be used to detect, resolve or
infer events that occur in the system, just as tracking heat in a
thermodynamic system enables monitoring of that system.
Operations that affect string S and cause it to gain or lose
complexity could be accounted for, and an expected change in
complexity should be resolvable with the known (secured)
operations occurring in the information system to produce
expected changes in complexity. Complexity changes that
occur in a system that cannot be accounted for by normal
system operations indicate unauthorized processes taking
place. Thus, in the ideal case where Kolmogorov Complexity
is known, a check and balance on an information system that
enables assurance of proper operation and detection of
unauthorized activity is possible. Unfortunately (as previously
discussed) a precise measure of Kolmogorov Complexity is
not computable. We can, however, bound the increase in
Kolmogorov Complexity as shown in the theorems below.

A. Theorems of Conservation

Kolmogorov Complexity, K(x), can be thought of as a
conserved parameter that changes through computational
operations conducted upon strings. In order for K(x) to be a
conserved parameter one must account for changes in K(x).
Two theorems are presented below that enable bounds to be
placed on the changes in K(x) that occur due to computational
operations occurring in an information system. The two
theorems, which are proven in the appendix, show bounds on
the amount of complexity that can exist due to knowledge of
other strings or computational operations. These theorems are
proven in the appendix.

1) Theorem 1: Bound on Conditional Complexity

)()|(yKxyK ϕϕ ≤

2) Theorem 2: Bound on Complexity Increase Due to a
Computational Operation

)()(),|(pLxKpxyK +≤ ϕϕ

B. The Principle of Conservation of Complexity

As shown above, while not computable from below, upper
bounds on the increase in Kolmogorov Complexity can be
crudely known by keeping track of the size of programs that
affect data. This bound may be incredibly loose, as it is quite

Paper Number 710 submitted to MILCOM 2002, Unclassified

3

possible to operate on a string and make it much less complex
than the input. One would need a method to recognize this
simplification. However, these results provide an intuitively
attractive method for quantifying the “work” performed by a
computational operation on information – the change in
complexity introduced by the operation. A thorough treatment
of bounds related to K(y|x) and the “Information Distance”
between strings is contained in Bennett et al. [28].

The principle of conservation of complexity can be applied
to closed as well as open information systems in the same
manner that thermodynamic systems are applied to closed or
open systems. It is not necessary to maintain an account of
every operation that takes place in an information system to
utilize this principle. Expected complexity changes through
authorized processes that are either mathematically determined
or measured and benchmarked for healthy systems can be
applied to various points in the information system in the same
manner that temperature meters and mass flow indicators
monitor the health of open thermodynamic systems.

The principle of conservation of complexity is summarized
in figure 1, where the complexity inherent in a stream of data
over time falls within bounds determined by the authorized
processes of the system or protocol. This principle can be
applied to any process for which finite sets of authorized
processes are known or measurable. An ideal application is in
network protocols. See [6] for a case where complexity is
used to detect Distributed Denial Of Service (DDoS) attacks
based on complexity of packet data. In this paper, without
considering the data payload we look at the transport layer
protocol alone. As information transitions across each layer of
network protocol stack and messages are exchanged within the
policies of the protocol, finite changes in complexity occur.
Expected behaviors can be either derived from the protocol
rules and policies or measured and benchmarked for healthy
systems.

Figure 1: Conservation of Complexity

IV. CONSERVATION OF COMPLEXITY IN NETWORK

PROTOCOLS

A. Challenges

The major difficulties in applying conservation of
complexity to a protocol lie in both coordinating the timing
aspects of the protocol and in dealing with the wide variation
in operations inherent in normal protocol use. Packets
traversing a protocol stack may be routed through different
host computers - acknowledgements may be lost, retries may
be attempted. However, from various points in the network a
stream or flow of data between two host ports, for example,
may be measurable. A firewall is a logical place for this to
take place, since routing ambiguity is lost. At a measurement
point, timing aspects of the protocol may be kept track of by
simply concatenating session packets together into a single
string. Two separate strings may be maintained – one for each
direction, or a single combined string may be maintained.
When concentrating on the protocol alone, the application
specific data portion of the packets may be ignored (unless
application behavior is well known) in order to restrict the
operations that can occur on the data to a known and
manageable set.

B. Conservation of Complexity Across TCP/IP

 While networks are not closed systems, network
protocols provide bounds on the operations and expected
behavior that can or should occur when properly using a
protocol. Wide variation in complexity will normally occur at
the application layer. However, since the very nature and
purpose of protocols is to enforce regularity, it is not
unexpected that restricted complexity changes occur in the
normal use of protocols. Thus the following hypothesis is
introduced: The principle of conservation of complexity
applied to network protocols – using either calculated or
measured norms – can identify healthy or attack behavior. The
results in the next section show that complexity metrics
applied to transport layer header information of FTP sessions
can distinguish attack vs. normal protocol use. We utilize
UNIX compress to measure complexity, as noted in section II.
The results show that complexity of protocol use in various
attack scenarios is typically and discernibly less complex than
normal FTP sessions.

V. EXPERIMENTAL RESULTS

The Conservation of Complexity principle is tested using
FTP[8] sessions between a client and server node.

A. Experimental Setup

All tests were performed using the same two systems. The
client was running Redhat Linux 7.1. The server was running
Solaris 2.6. The tcpdump command [9], running on the server,
was used to capture all traffic.

B. Normal Traffic Patterns Generated

To distinguish between typical FTP traffic and attack traffic,

Paper Number 710 submitted to MILCOM 2002, Unclassified

4

we first specified several typical FTP sessions, using a variety
of functions and tools. The following typical sessions were
specified:

1. Incorrect login
2. Connected and left
3. Connected, looked for a file, and left
4. Put one file
5. Retrieved one file
6. Retrieved several files
7. Retrieved an entire directory
8. Used a web browser to examine and obtain several

files.
The first six sessions were executed using expect[10]. The

seventh was using ncftp[11] – often used to get multiple files;
the last session was executed using Netscape Navigator.

C. Attack Patterns generated

We found several FTP exploits on the Internet. These
exploits are summarized in table 1. We selected all that could
be compiled and made to run in a script. These exploits are
written in various styles and techniques. This provided a
variety of implementations, as the source language, target, and
exploit technique varied. Techniques included buffer
overflows, Trojan executables, and denial of service attacks.
At least three different implementations of FTP daemons are
targeted. Some succeeded on a Solaris server, such as
techniques to break out of a chroot() jail. Four of the exploits
were denial of service attacks written in Perl. Some exploits
targeted the same weakness, but the code was written in a
different style. The woot-exploit[24] attack launched 978 FTP
sessions before we terminated it. The wuXploit[26] attack
launched two different FTP sessions.

Name Program Version Type of attack
Babcia[13] proftpd 1.2.0 Realpath(): overflow
Duke[14] Wu-ftpd 2.4.b18 Realpath(): overflow
wh0a[15] Wu-ftpd 2.4.b18 Realpath(): overflow
w00f[16] Wu-ftpd 2.4.18 Realpath(): overflow

Bobek[17] Wu-ftpd 2.6.0
SITE EXEC
 metacharacters

Ftpwarez[18] Wu-ftpd 2.4 b17 Realpath(): overflow

Wftpd241[19] WFTPPro 2.4.1
RNTO w/o RNFR
DoS

Wftpd241-11-1[20] WFTPPro 2.4.1
STAT send before
LIST completes, DoS

Wftpd241-11-2[20] WFTPPro 2.4.1
REST STAT
before STOU, DoS

Wftpd241-11-4[20] WFTPPro 2.4.1
MLST before
LOGIN, DoS

Wu-ftpd26[21] Wu-ftpd 2.6.0
SITE EXEC
 metacharacters

Wuftpd-god[23] Wu-ftpd 2.6.0 MKD/CWD:overflow
Wu-ftpd-v2.4.4[24] Wu-ftpd 2.4.4 SITE EXEC

Woot-exploit[25] Wu-ftpd 2.6.1
SITE EXEC
file glob

WuXploit[26] Wu-ftpd 2.6.1
Auto-compress
spoof

Table 1

D. Measurement method

Tcpdump was used to convert the packet trace into ASCII.
This string of information corresponds to a network session.
The string representing the session was compressed using
Solaris’s standard compress utility. Each FTP connection
resulted in a single point on the graph.

The first examination of the data showed no pattern. It was
felt that there was significant noise in the network trace. We
then presented the data in a form that would hopefully allow
patterns to be more apparent.

Normal network traces consists of traffic flowing both ways.
We felt that if we separated the traffic into two sets –
(outgoing and incoming) and then appended them, the patterns
would be more apparent. Therefore our traces consist of all of
the packets from the client, followed by all of the packets from
the server. However, each trace has a lot of data that has large
effects on data complexity that are not directly related to the
regularities associated with the protocol. For example, every
line has a unique timestamp twice. To reduce this “complexity
noise”, we used a filter to reduce the trace data to the
following TCP information:

• Hostnames and ports (identical for all cases)
• Flags
• Bytes transmitted
• Bytes acknowledged
• Available window size

Examples of raw vs. filtered tcpdump data are contained in the
appendix.

Comment 1: We wish to emphasize that the data examined
only consists of TCP-specific information. No analysis of the
data within the payload was used. Also, we only analyzed port
21 traffic, which is used as a control channel for the data. We
did not examine the complexity of the data channel.

Comment 2: The filtering and rounding of the TCP data is
justified due to the fact that our interest is in monitoring and
benchmarking the normal complexity of the protocol. Integers
and numbers involved in timestamps etc. are not related to
protocol complexity and thus can and should be removed as
they add noise to the data that is unrelated to the healthy use of
the protocol.

E. Experimental Measurement Results

There were 8 typical FTP sessions, and 996 attacks. Figure
2 shows a detail of the original data set, without filters. The X-
axis is the size of the trace in bytes, and the Y-axis shows the
size of the compressed trace.

The ratio of these two values shows the complexity of the
trace. Some of the samples coincided and are not visible.
Attacks and normal FTP sessions followed the same
complexity curve. However, there was no clear distinction
between the two sets.

Paper Number 710 submitted to MILCOM 2002, Unclassified

5

Figure 2: Size of network trace vs. compressed network trace of healthy and
attach session, unfiltered data.

Figure 3 shows the entire data set after applying the

filtering. Figure 4 shows the same dataset in detail

Figure 3: Size of network trace vs. compressed network trace of healthy and
attach session, filtered data.

Figure 4: Size of network trace vs. compressed network trace of healthy and
attach session, filtered data – detailed view.

F. Analysis of results

The results indicate that FTP sessions have predictable
complexity. The complexity curves generated by this data are
not linear initially, but approach a linear compression ratio of
approximately 4:1 as the trace size increases. This could be do
in part to the nature of LZ78 to reach asymptotic limits as file
size increases – the uniqueness individual protocol sessions is
expected to be less measurable by LZ78 as session length
increases. Before we applied our filters, typical sessions had
the same complexity as attacks. After filtering, the distinction
between these two classes of connections became remarkable:
attack sessions have less complexity as indicated by a higher
compression ratio of 4.25:1 vs. healthy sessions with a
compression ratio of 3.75:1. The curves are smooth and
consistently show that attack sessions are more compressible,
hence less complex than normal sessions.

Statistical analysis of the data comprising filtered traces less
than 4000 Bytes confirms a significant difference between
normal and attack complexity curves. We fit a linear
regression of log(compressed filtered trace size) vs.
log(filtered trace size) on the attack series due to the
exponential nature of the curves. The F-statistic indicates a
highly significant fit for which the p-value is less than 0.0001.
The closest piece of normal traffic differed from this attack
model by 4 sigma (99.99%).

One attack (wuXploit) is highlighted in Figure 4 as two
points indicated by squares. In this attack, two sessions are
initiated. The first session sets up the system to be exploited by
creating a Trojan compression program. The second session is
a normal session, simply requesting a compressed file. As
indicated on Figure 4, the active attack is on the exploit curve,
and the normal file transfer is on the normal curve, thus
validating the complexity metric.

 Several reasons may be used to explain why FTP exploits
were measured to be less complex at the TCP level than
normal traffic. One possible reason is that exploits tend to send
more data to the server without analyzing the results. Another
is that standard applications are designed to be flexible, and
attempt to negotiate protocol extensions if possible. This
makes the session more complex. Thirdly, people who write
exploits tend to simplify the complexity, often combining
steps. For instance, rather than sending the USER and PASS
parameters in two packets, they tend to use one request, and
one packet.

VI. CONCLUSIONS

The results show that the principle of conservation of
complexity applied to network protocols holds promise with
respect to objectively benchmarking network health and
identifying network attacks. There is a strong distinction
between typical and attack complexity characteristics in the
FTP data set we used when analyzing TCP-specific
information that has been filtered to remove complexity noise
unrelated to the protocol itself. These results show that TCP-
based protocols have predictable complexity curves. That is,

Paper Number 710 submitted to MILCOM 2002, Unclassified

6

complexity is conserved and falls within expected norms for
normal protocol use. Different applications may have different
curves, and the exploits we used apparently have remarkably
different complexity curves from typical traffic. Therefore it is
possible to use complexity to assist in distinguishing between
typical traffic and exploits.

Future work is necessary in numerous areas to validate this
principle. Similar experiments are necessary with larger data
sets, different protocols and network configurations, and
alternative measures complexity in order further validate and
determine the bounds of usefulness for the principle of
conservation of complexity. In particular, examining
application specific commands, arguments, and data, both as
individual sessions, and across multiple sessions, should be
investigated.

APPENDIX

1) Theorem 1: Bound on Conditional Complexity

)()|(yKxyK ϕϕ ≤

Proof: Since K(y) is the minimal length program that

produces string y with no input, input x can only reduce the
length of the program required to produce y. At worst, x can
be ignored completely, in which case K(y|x)=K(y). However,
knowing x may reduce the program to produce y, depending
on the extent that string x contributes towards generating string
y or enables a more efficient generation of y. QED

2) Theorem 2: Bound on Complexity Increase Due to
Computational Operation

)()(),|(pLxKpxyK +≤ ϕϕ

Proof: Program p of length L(p) takes input string x to

produce output string y. Proof by contradiction: consider a
program p that could be run on input string x to produce string
y. Assume that the complexity of y = K(y|x,p) > K(x) + L(p).
But one could produce string y by first forming string x with
program of length K(x), then running program p of length
L(p), thus producing y with a program of length K(x) + L(p).
But this violates the definition of Kolmogorov Complexity as
being the minimum length program, since a program of smaller
length has been found. Thus the assumption is false and
K(y|x,p) must be <= K(x) + L(p). QED

Example of Raw TCP Dump Data

12:25:01.676332 3.1.175.241.32827 > 3.1.4.53.21: S 1887323655 :
1887323655(0) win 5840 <mss 1460, sackOK,timestamp 776798 0, nop,
wscale 0> (DF)
12:25:01.677773 3.1.175.241.32827 > 3.1.4.53.21: . ack 4059525913 win
5840 <nop,nop,timestamp 776799 2271017432> (DF)
12:25:01.748597 3.1.175.241.32827 > 3.1.4.53.21: . ack 60 win 5840
<nop,nop,timestamp 776806 2271017503> (DF)

Example of Filtered TCP Dump Data:
3.1.175.241 * 3.1.4.53 ftp: S 0 win 5840
3.1.175.241 * 3.1.4.53 ftp: . ack 0 win 5840
3.1.175.241 * 3.1.4.53 ftp: . ack 60 win 5840

ACKNOWLEDGMENT

We wish to Steve Bush, Amit Kulkarni, and Colin
McCulloch for help and encouragement in developing these
ideas.

REFERENCES

[1] Cover, T. M. and Thomas, J. A. Elements of Information Theory.
Wiley, NY, 1991

[2] Evans, S, Bush, S. F., and Hershey, J., “Information Assurance through
Kolmogorov Complexity”, DARPA Information Survivability
Conference & Exposition II, 2001, Proceedings Vol 2, pp 322-331.

[3] Kieffer, J. C. and Yang, E. “Sequential Codes, Lossless Compression of
Individual Sequences, and Kolmogorov Complexity,” IEEE
Transactions of Information Theory, Vol 42, 1 January 1996

[4] Li, M. and Vitányi, P. An Introduction to Kolmogorov Complexity and
Its Applications, Springer, NY 1997

[5] Evans, S. C., Hershey, J. E “Sequence Complexity Probes,” submitted
to SCI conference in Orlando, July 2002.

[6] Kulkarni, A. B., Bush, S. F. and Evans, S. C. "Detecting Distributed
Denial-of-Service Attacks using Kolmogorov Complexity Metrics," GE
Research Technical Report 2001CRD176. December, 2001.

[7] Evans, S. C. and Bush, S. F. “Symbol Compression Ratio for String
Compression and Estimation of Kolmogorov Complexity,” GE
Research Technical Report 2001CRD159, November 2001.

[8] FTP - http://www.ietf.org/rfc/rfc959.txt
[9] Tcpdump – see http://www.tcpdump.org/
[10] Expect - http://expect.nist.gov/
[11] Ncftp - http://www.ncftp.com/
[12] Netscape Navigator http://www.netscape.com/download
[13] Babcia - http://security-archive.merton.ox.ac.uk/bugtraq-

199908/0396.html
[14] Duke http://lists.nas.nasa.gov/archives/ext/linux-security-

audit/1999/03/msg00174.html
[15] Wh0a http://online.securityfocus.com/archive/1/12962
[16] Woof - http://security-archive.merton.ox.ac.uk/bugtraq-

199905/0022.html
[17] Bobek - http://v.freebsd.lublin.pl/sources/security/security/bobek.c
[18] Ftpwarez - - http://www.spitzner.org/winwoes/packetstorm/0003-

exploits/ftpwarez.c
[19] Wftpd241 -

http://www.mp3glowe.com/defson/files/hacking/exploits/wftpd241.txt
[20] Wftpd-241 http://www.securiteam.com/exploits/5OP0P0K20E.html
[21] Wu-ftpd26 http://security-archive.merton.ox.ac.uk/bugtraq-200007/att-

0046/01-wu-ftpd26.c
[22] Wu-ftpd-exp http://online.securityfocus.com/archive/1/68687
[23] Wuftpd-god http://online.securityfocus.com/attachment/2002-02-

26/wuftpd-god.c
[24] Wu-ftpd-246 http://invaultech.com/files/Hacks2/wu-ftpd-v2.4.4.c
[25] Woot-exploit http://online.securityfocus.com/archive/82/244938
[26] WuXploit http://open-security.org/vulnerable/servers/ftpd/wuXploit.tgz
[27] Lempel, A. and Ziv, J. “One The Complexity of Finite Sequences,”

IEEE Transactions of Information Theory, Vol IT 22, January 1976, pp
75-81.

[28] Benett et. Al “Information Distance” IEEE Transactions on Information
Theory, Vol 4, no 4. July 1998, pp 1407-1423.

[29] Ziv, J. and Lempel, A. “A universal algorithm for sequential data
compression,” IEEE Trans. Inform Theory, vol IT-23, pp. 337-343,
1977.

[30] Ziv, J. and Lempel, A. “Compression of individual sequences via
variable length coding,” IEEE Trans. Inform. Theory, vol IT-24, pp.
530-536, 1978.

