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Abstract-- The problem of Network Security is approached 

from the point of view of Kolmogorov Complexity (see [2] for 
background).  The principle of conservation of complexity is 
utilized to objectively identify healthy complexity norms and 
detect attacks via deviation of these norms under TCP/IP. 
Observed complexity changes that fall within expected bounds 
are indicators of system health, while complexity changes outside 
the expected bounds for normal protocol and application use are 
indicators of system fault or attack.  Experimental results using 
FTP normal and attack sessions are presented. 
 

Index Terms— Network Security, Kolmogorov Complexity  

I. INTRODUCTION 

NITED States military operations have a long and rich 
history of exploiting technological advantage and 

engraining a deep technical understanding in every operator. 
US Navy nuclear propulsion plant operators for example, 
understand intimately the physical laws that govern the 
operation of their equipment. This proficiency in 
thermodynamics and propulsion in our military stands in sharp 
contrast to the science of information assurance in commercial 
or military operations.  For example, it would be entirely 
unacceptable if the first indication of a heat exchanger leak in 
a nuclear powered ship were someone noticing that a rat had 
crawled inside of an empty tank.   The operators would have 
noticed first a pressure drop, or reduced heat transfer 
performance and temperature changes.  The leak would have 
been identified and corrective action taken long before any 
real damage had occurred to the mission or equipment.  But 
many information security problems go unnoticed until 
extreme damage is done and an absurd result finally reveals 
the problem after the fact.  We lack in the information 
assurance domain the physics of information that would enable 
operators to apply the same degree of diligence to their 
mission critical information networks that they apply to other 
mission critical systems. 
 Towards the goal of establishing a fundamental science of 
information assurance, Kolmogorov Complexity was proposed 
in [2] to be a fundamental property of information that can be 
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used as a basic information parameter from which to build 
laws and models of information security.  In this paper we 
review and expand upon the concepts introduced in [2] by 
developing the concept of Conservation of Complexity and 
applying it to the TCP/IP network protocol suite.     

  The advantage of using Complexity as a fundamental 
parameter to monitor system health and achieve information 
security lies in its objectivity.  Any given string has a 
Kolmogorov Complexity without regard to the details of the 
system on which it is running.  The operating system, protocol 
being used, and meaning of the data represented by a 
particular string, while related to string complexity, need not 
be known in order to measure string complexity.  Kolmogorov 
Complexity is an inherent property of a string that can be used 
to build the science of information assurance in a way that is 
similar to role played by parameters such as pressure and heat 
in thermodynamics.    

This paper applies the principle of conservation of 
complexity across network protocols as an objective means to 
benchmark normal behavior and detect network attacks.  In 
order for this paper to be self-contained we briefly review 
Kolmogorov Complexity and the principle of conservations of 
complexity.  Next we discuss the challenges that must be 
overcome in order to apply this principle on a network running 
TCP/IP.  Finally we give experimental evidence showing the 
usefulness of this principle and its ability to detect FTP attacks 
by monitoring only the complexity of TCP/IP protocol data. 

II. BACKGROUND 

A. Kolmogorov Complexity 

Kolmogorov Complexity (K(x)) is a measure of descriptive 
complexity contained in an object or string (x). It refers to the 
minimum length of a program such that a universal computer 
can generate a specific string.  A good introduction to 
Kolmogorov Complexity is contained in [1] with a solid 
treatment in [4]. Kolmogorov Complexity is related to 
Shannon entropy, in that the expected value of K(x) for a 
random sequence is approximately the entropy of the source 
distribution for the process generating the sequence.  However, 
Kolmogorov Complexity differs from entropy in that it relates 
to the specific string being considered rather than the source 
distribution.  Kolmogorov Complexity can be described as 
follows, where ϕ represents a universal computer (Turing 
machine), p represents a program, and x represents a string:  
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Random strings have rather high Kolmogorov Complexity – 
on the order of their length, as patterns cannot be discerned to 
reduce the size of a program generating such a string.  On the 
other hand, strings with a large amount of structure have fairly 
low complexity.  Universal computers can be equated through 
programs of constant length, thus a mapping can be made 
between universal computers of different types, and the 
Kolmogorov Complexity of a given string on two computers 
differs by known or determinable constants.   

The conditional Kolmogorov Complexity, K(y|x) of a string 
y given string x as input is described by the equation below: 
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where l(p) represents program length p and ϕ is a particular 
universal computer under consideration.   

   The major difficulty with Kolmogorov Complexity is that 
it is not computable.  The length of any program that produces 
a given string is an upper bound on the Kolmogorov 
Complexity for this string, but you can’t compute the lower 
bound [4]. 

B. Estimators of Complexity 

As discussed above, exact measurement of Kolmogorov 
Complexity is not achievable, however various methods of 
estimating complexity are available.  A natural choice for 
estimation of complexity is the class of universal compression 
techniques.  In [27] Lempel and Ziv define a measure of 
complexity for finite sequences rooted in the ability to produce 
these sequences from simple copy operations.  The familiar 
Lempel Ziv 77 and 78 [29], [30] universal compression 
algorithms (LZ77, LZ78) harness these principles to yield 
compression algorithms that can approach the entropy of an 
infinite sequence produced by an ergodic source.   Unix 
compress, which is based on the LZ78, is used as the 
compression estimation algorithm in this paper.  

III. CONSERVATION OF COMPLEXITY 

    Conserved variables enable one to deduce parameters 
from the presence or absence of other parameters.  The Law of 
Conservation of Matter and Energy for example allows one to 
deduce how well a thermodynamic system is functioning 
without knowing every parameter in the system.  Heat gain in 
one part of the system was either produced by some process or 
traveled from (and was lost from) another part of the system.  
One knows that if the thermal efficiency of a thermodynamic 
system falls below certain thresholds then there is problem.  
On the other hand, if more heat is produced by a system than 
expected, some unintended process is at work.  A similar 

situation is desirable for information systems – the ability to 
detect lack of assurance by the presence of something 
unexpected, or the absence of something that is expected.  This 
seems to be far from reach, given that information is easily 
created and destroyed with little residual evidence or impact. 

    Since complexity of a given string can only change 
through computational operations, it is in a sense a conserved 
variable.  Suppose the exact Kolmogorov Complexity K(S) of 
a string of data S was available.  One would essentially have a 
conserved parameter that could be used to detect, resolve or 
infer events that occur in the system, just as tracking heat in a 
thermodynamic system enables monitoring of that system.  
Operations that affect string S and cause it to gain or lose 
complexity could be accounted for, and an expected change in 
complexity should be resolvable with the known (secured) 
operations occurring in the information system to produce 
expected changes in complexity.  Complexity changes that 
occur in a system that cannot be accounted for by normal 
system operations indicate unauthorized processes taking 
place. Thus, in the ideal case where Kolmogorov Complexity 
is known, a check and balance on an information system that 
enables assurance of proper operation and detection of 
unauthorized activity is possible.  Unfortunately (as previously 
discussed) a precise measure of Kolmogorov Complexity is 
not computable.  We can, however, bound the increase in 
Kolmogorov Complexity as shown in the theorems below. 

A. Theorems of Conservation 

Kolmogorov Complexity, K(x), can be thought of as a 
conserved parameter that changes through computational 
operations conducted upon strings.  In order for K(x) to be a 
conserved parameter one must account for changes in K(x).  
Two theorems are presented below that enable bounds to be 
placed on the changes in K(x) that occur due to computational 
operations occurring in an information system.  The two 
theorems, which are proven in the appendix, show bounds on 
the amount of complexity that can exist due to knowledge of 
other strings or computational operations.  These theorems are 
proven in the appendix. 

 
1)  Theorem 1: Bound on Conditional Complexity 

 
)()|( yKxyK ϕϕ ≤  

 
2)  Theorem 2: Bound on Complexity Increase Due to a 
Computational Operation 

 
)()(),|( pLxKpxyK +≤ ϕϕ  

 

B. The Principle of Conservation of Complexity 

As shown above, while not computable from below, upper 
bounds on the increase in Kolmogorov Complexity can be 
crudely known by keeping track of the size of programs that 
affect data.   This bound may be incredibly loose, as it is quite 
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possible to operate on a string and make it much less complex 
than the input.  One would need a method to recognize this 
simplification. However, these results provide an intuitively 
attractive method for quantifying the “work” performed by a 
computational operation on information – the change in 
complexity introduced by the operation. A thorough treatment 
of bounds related to K(y|x) and the “Information Distance” 
between strings is contained in  Bennett et al. [28]. 

The principle of conservation of complexity can be applied 
to closed as well as open information systems in the same 
manner that thermodynamic systems are applied to closed or 
open systems.  It is not necessary to maintain an account of 
every operation that takes place in an information system to 
utilize this principle.  Expected complexity changes through 
authorized processes that are either mathematically determined 
or measured and benchmarked for healthy systems can be 
applied to various points in the information system in the same 
manner that temperature meters and mass flow indicators 
monitor the health of open thermodynamic systems. 

The principle of conservation of complexity is summarized 
in figure 1, where the complexity inherent in a stream of data 
over time falls within bounds determined by the authorized 
processes of the system or protocol.  This principle can be 
applied to any process for which finite sets of authorized 
processes are known or measurable.  An ideal application is in 
network protocols.  See [6] for a case where complexity is 
used to detect Distributed Denial Of Service (DDoS) attacks 
based on complexity of packet data.  In this paper, without 
considering the data payload we look at the transport layer 
protocol alone. As information transitions across each layer of 
network protocol stack and messages are exchanged within the 
policies of the protocol, finite changes in complexity occur.  
Expected behaviors can be either derived from the protocol 
rules and policies or measured and benchmarked for healthy 
systems. 

 

Figure 1: Conservation of Complexity 

IV. CONSERVATION OF COMPLEXITY IN NETWORK 

PROTOCOLS 

A. Challenges 

The major difficulties in applying conservation of 
complexity to a protocol lie in both coordinating the timing 
aspects of the protocol and in dealing with the wide variation 
in operations inherent in normal protocol use.  Packets 
traversing a protocol stack may be routed through different 
host computers - acknowledgements may be lost, retries may 
be attempted.  However, from various points in the network a 
stream or flow of data between two host ports, for example, 
may be measurable.  A firewall is a logical place for this to 
take place, since routing ambiguity is lost.  At a measurement 
point, timing aspects of the protocol may be kept track of by 
simply concatenating session packets together into a single 
string.  Two separate strings may be maintained – one for each 
direction, or a single combined string may be maintained.  
When concentrating on the protocol alone, the application 
specific data portion of the packets may be ignored (unless 
application behavior is well known) in order to restrict the 
operations that can occur on the data to a known and 
manageable set. 

B. Conservation of Complexity Across TCP/IP 

    While networks are not closed systems, network 
protocols provide bounds on the operations and expected 
behavior that can or should occur when properly using a 
protocol.  Wide variation in complexity will normally occur at 
the application layer.  However, since the very nature and 
purpose of protocols is to enforce regularity, it is not 
unexpected that restricted complexity changes occur in the 
normal use of protocols. Thus the following hypothesis is 
introduced:  The principle of conservation of complexity 
applied to network protocols – using either calculated or 
measured norms – can identify healthy or attack behavior.  The 
results in the next section show that complexity metrics 
applied to transport layer header information of FTP sessions 
can distinguish attack vs. normal protocol use.  We utilize 
UNIX compress to measure complexity, as noted in section II.  
The results show that complexity of protocol use in various 
attack scenarios is typically and discernibly less complex than 
normal FTP sessions. 

V. EXPERIMENTAL RESULTS 

The Conservation of Complexity principle is tested using 
FTP[8] sessions between a client and server node. 

A. Experimental Setup 

All tests were performed using the same two systems. The 
client was running Redhat Linux 7.1. The server was running 
Solaris 2.6. The tcpdump command [9], running on the server, 
was used to capture all traffic. 

B. Normal Traffic Patterns Generated 

To distinguish between typical FTP traffic and attack traffic, 
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we first specified several typical FTP sessions, using a variety 
of functions and tools.  The following typical sessions were 
specified: 

1. Incorrect login 
2. Connected and left 
3. Connected, looked for a file, and left 
4. Put one file 
5. Retrieved one file 
6. Retrieved several files 
7. Retrieved an entire directory 
8. Used a web browser to examine and obtain several 

files.  
The first six sessions were executed using expect[10]. The 

seventh was using ncftp[11] – often used to get multiple files; 
the last session was executed using Netscape Navigator.  

C. Attack Patterns generated 

We found several FTP exploits on the Internet. These 
exploits are summarized in table 1.  We selected all that could 
be compiled and made to run in a script.  These exploits are 
written in various styles and techniques. This provided a 
variety of implementations, as the source language, target, and 
exploit technique varied. Techniques included buffer 
overflows, Trojan executables, and denial of service attacks. 
At least three different implementations of FTP daemons are 
targeted. Some succeeded on a Solaris server, such as 
techniques to break out of a chroot() jail. Four of the exploits 
were denial of service attacks written in Perl. Some exploits 
targeted the same weakness, but the code was written in a 
different style.  The woot-exploit[24] attack launched 978 FTP 
sessions before we terminated it. The wuXploit[26] attack 
launched two different FTP sessions. 

 
Name Program Version Type of attack 
Babcia[13] proftpd 1.2.0 Realpath():  overflow  
Duke[14] Wu-ftpd 2.4.b18 Realpath():  overflow 
wh0a[15] Wu-ftpd 2.4.b18 Realpath():  overflow 
w00f[16] Wu-ftpd 2.4.18 Realpath(): overflow 

Bobek[17] Wu-ftpd 2.6.0 
SITE EXEC 
 metacharacters 

Ftpwarez[18] Wu-ftpd 2.4 b17 Realpath(): overflow 

Wftpd241[19] WFTPPro 2.4.1 
RNTO w/o RNFR  
DoS 

Wftpd241-11-1[20] WFTPPro 2.4.1 
STAT send before  
LIST completes, DoS 

Wftpd241-11-2[20] WFTPPro 2.4.1 
REST STAT  
before STOU, DoS 

Wftpd241-11-4[20] WFTPPro 2.4.1 
MLST before  
LOGIN, DoS 

Wu-ftpd26[21] Wu-ftpd 2.6.0 
SITE EXEC 
 metacharacters 

Wuftpd-god[23]  Wu-ftpd 2.6.0 MKD/CWD:overflow 
Wu-ftpd-v2.4.4[24] Wu-ftpd 2.4.4 SITE EXEC 

Woot-exploit[25] Wu-ftpd 2.6.1 
SITE EXEC 
file glob 

WuXploit[26] Wu-ftpd 2.6.1 
Auto-compress  
spoof 

Table 1 

D. Measurement method 

Tcpdump was used to convert the packet trace into ASCII. 
This string of information corresponds to a network session. 
The string representing the session was compressed using 
Solaris’s standard compress utility. Each FTP connection 
resulted in a single point on the graph.  

The first examination of the data showed no pattern. It was 
felt that there was significant noise in the network trace. We 
then presented the data in a form that would hopefully allow 
patterns to be more apparent.  

Normal network traces consists of traffic flowing both ways. 
We felt that if we separated the traffic into two sets – 
(outgoing and incoming) and then appended them, the patterns 
would be more apparent. Therefore our traces consist of all of 
the packets from the client, followed by all of the packets from 
the server.   However, each trace has a lot of data that has large 
effects on data complexity that are not directly related to the 
regularities associated with the protocol.  For example, every 
line has a unique timestamp twice. To reduce this “complexity 
noise”, we used a filter to reduce the trace data to the 
following TCP information: 

 
• Hostnames and ports (identical for all cases) 
• Flags 
• Bytes transmitted 
• Bytes acknowledged 
• Available window size 
 

Examples of raw vs. filtered tcpdump data are contained in the 
appendix.  
 
Comment 1: We wish to emphasize that the data examined 
only consists of TCP-specific information. No analysis of the 
data within the payload was used. Also, we only analyzed port 
21 traffic, which is used as a control channel for the data. We 
did not examine the complexity of the data channel.  
  
Comment 2:  The filtering and rounding of the TCP data is 
justified due to the fact that our interest is in monitoring and 
benchmarking the normal complexity of the protocol.  Integers 
and numbers involved in timestamps etc. are not related to 
protocol complexity and thus can and should be removed as 
they add noise to the data that is unrelated to the healthy use of 
the protocol. 

E. Experimental Measurement Results 

There were 8 typical FTP sessions, and 996 attacks. Figure 
2 shows a detail of the original data set, without filters. The X-
axis is the size of the trace in bytes, and the Y-axis shows the 
size of the compressed trace.  

The ratio of these two values shows the complexity of the 
trace. Some of the samples coincided and are not visible. 
Attacks and normal FTP sessions followed the same 
complexity curve. However, there was no clear distinction 
between the two sets. 
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Figure 2: Size of network trace vs. compressed network trace of healthy and 
attach session, unfiltered data. 

 
Figure 3 shows the entire data set after applying the 

filtering. Figure 4 shows the same dataset in detail 
 

  
Figure 3: Size of network trace vs. compressed network trace of healthy and 
attach session, filtered data. 

 

 
Figure 4: Size of network trace vs. compressed network trace of healthy and 
attach session, filtered data – detailed view. 

F. Analysis of results 

The results indicate that FTP sessions have predictable 
complexity. The complexity curves generated by this data are 
not linear initially, but approach a linear compression ratio of 
approximately 4:1 as the trace size increases.  This could be do 
in part to the nature of LZ78 to reach asymptotic limits as file 
size increases – the uniqueness individual protocol sessions is 
expected to be less measurable by LZ78 as session length 
increases.  Before we applied our filters, typical sessions had 
the same complexity as attacks. After filtering, the distinction 
between these two classes of connections became remarkable: 
attack sessions have less complexity as indicated by a higher 
compression ratio of 4.25:1 vs. healthy sessions with a 
compression ratio of 3.75:1. The curves are smooth and 
consistently show that attack sessions are more compressible, 
hence less complex than normal sessions. 

Statistical analysis of the data comprising filtered traces less 
than 4000 Bytes confirms a significant difference between 
normal and attack complexity curves. We fit a linear 
regression of log(compressed filtered trace size) vs. 
log(filtered trace size) on the attack series due to the 
exponential nature of the curves.   The F-statistic indicates a 
highly significant fit for which the p-value is less than 0.0001.  
The closest piece of normal traffic differed from this attack 
model by 4 sigma (99.99%).  

One attack (wuXploit) is highlighted in Figure 4 as two 
points indicated by squares. In this attack, two sessions are 
initiated. The first session sets up the system to be exploited by 
creating a Trojan compression program. The second session is 
a normal session, simply requesting a compressed file. As 
indicated on Figure 4, the active attack is on the exploit curve, 
and the normal file transfer is on the normal curve, thus 
validating the complexity metric. 

 Several reasons may be used to explain why FTP exploits 
were measured to be less complex at the TCP level than 
normal traffic. One possible reason is that exploits tend to send 
more data to the server without analyzing the results. Another 
is that standard applications are designed to be flexible, and 
attempt to negotiate protocol extensions if possible. This 
makes the session more complex. Thirdly, people who write 
exploits tend to simplify the complexity, often combining 
steps. For instance, rather than sending the USER and PASS 
parameters in two packets, they tend to use one request, and 
one packet.  

VI. CONCLUSIONS 

The results show that the principle of conservation of 
complexity applied to network protocols holds promise with 
respect to objectively benchmarking network health and 
identifying network attacks. There is a strong distinction 
between typical and attack complexity characteristics in the 
FTP data set we used when analyzing TCP-specific 
information that has been filtered to remove complexity noise 
unrelated to the protocol itself.  These results show that TCP-
based protocols have predictable complexity curves.  That is, 
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complexity is conserved and falls within expected norms for 
normal protocol use.  Different applications may have different 
curves, and the exploits we used apparently have remarkably 
different complexity curves from typical traffic. Therefore it is 
possible to use complexity to assist in distinguishing between 
typical traffic and exploits.  

Future work is necessary in numerous areas to validate this 
principle.  Similar experiments are necessary with larger data 
sets, different protocols and network configurations, and 
alternative measures complexity in order further validate and 
determine the bounds of usefulness for the principle of 
conservation of complexity. In particular, examining 
application specific commands, arguments, and data, both as 
individual sessions, and across multiple sessions, should be 
investigated. 

APPENDIX 

1)  Theorem 1: Bound on Conditional Complexity 
 

)()|( yKxyK ϕϕ ≤  

 
Proof: Since K(y) is the minimal length program that 

produces string y with no input, input x can only reduce the 
length of the program required to produce y.  At worst, x can 
be ignored completely, in which case K(y|x)=K(y).  However, 
knowing x may reduce the program to produce y, depending 
on the extent that string x contributes towards generating string 
y or enables a more efficient generation of y. QED 
 

2)  Theorem 2: Bound on Complexity Increase Due to 
Computational Operation 

 
)()(),|( pLxKpxyK +≤ ϕϕ  

 
Proof: Program p of length L(p) takes input string x to 

produce output string y.  Proof by contradiction: consider a 
program p that could be run on input string x to produce string 
y.  Assume that the complexity of y = K(y|x,p) > K(x) + L(p).  
But one could produce string y by first forming string x with 
program of length K(x), then running program p of length 
L(p), thus producing y with a program of length K(x) + L(p).  
But this violates the definition of Kolmogorov Complexity as 
being the minimum length program, since a program of smaller 
length has been found.  Thus the assumption is false and 
K(y|x,p) must be  <= K(x) + L(p).  QED 

 
Example of Raw TCP Dump Data 

12:25:01.676332 3.1.175.241.32827 > 3.1.4.53.21: S 1887323655 : 
1887323655(0) win 5840 <mss 1460, sackOK,timestamp 776798 0, nop, 
wscale 0> (DF)  
12:25:01.677773 3.1.175.241.32827 > 3.1.4.53.21: . ack 4059525913 win 
5840 <nop,nop,timestamp 776799 2271017432> (DF) 
12:25:01.748597 3.1.175.241.32827 > 3.1.4.53.21: . ack 60 win 5840 
<nop,nop,timestamp 776806 2271017503> (DF) 

 
 

Example of Filtered TCP Dump Data: 
3.1.175.241 * 3.1.4.53 ftp: S 0 win 5840   
3.1.175.241 * 3.1.4.53 ftp: . ack 0 win 5840   
3.1.175.241 * 3.1.4.53 ftp: . ack 60 win 5840  
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