

# Introduction Objectifs



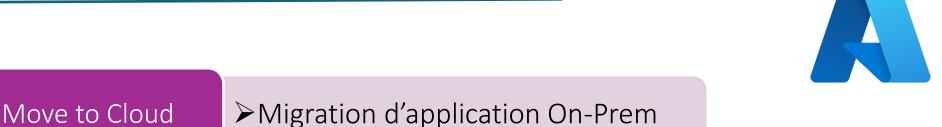
Introduire l'utilisation de GitHub Enterprise et son implication dans les procédés DevOps.



Présenter quelques menaces sur la plate-forme.



Mettre en avant les possibilités d'investigation.




Disclaimer : Cette présentation n'est pas une publicité pour la solution et n'a pas vocation à être à charge.

#### Introduction

## Les ressources Cloud en entreprise





Applications Cloudnative

➤ Construites à même le fournisseur

Environnement multi-cloud

➤ Pour l'hébergement des ressources

Multitude d'outils de développements

➤ GitLab, GitHub, SonarQube...









#### Introduction

## Contraintes et rationalisations

aws

Production

- Uniformiser les coûts
- Fournir une base de connaissance

Résilience

• Centraliser le code des applications

Contrôle

- Empêcher les mauvaises configurations
- Détecter des vulnérabilités dans le code

sonarqube

Infrastructure as Code, CICD

## Introduction

## GitHub Entreprise (Cloud)



### IAM

- Fédération des utilisateurs
- Administration




## Repository

- > Hébergement de fichier
- Développement collaboratif



## Actions

 Automatisation des activités de développement



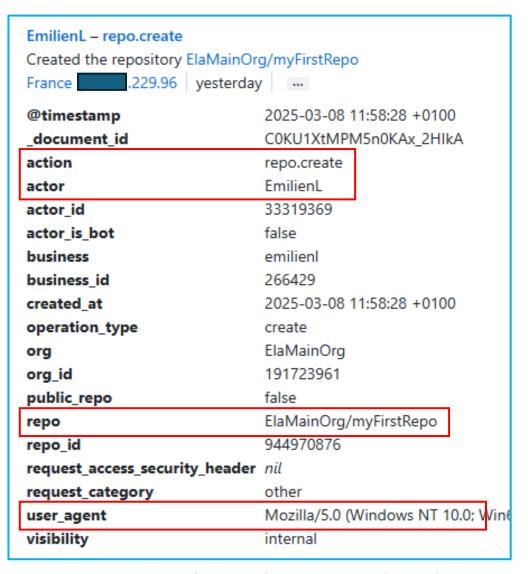
# Introduction Les Logs

#### Envoi des logs vers :

- > AWS, Azure, GCP
- ➤ Datadog, Splunk
- ➤ Par API ou export manuel

#### Push → Détection

Pull → Investigation


#### Deux types de journaux :

- ➤ Audit 180 jours de rétention
- $\triangleright$  Git 7 jours



#### GitHub ne trace pas :

- ➤ Les IPs sources (activable)
- > Les activités Git effectuées par navigateur

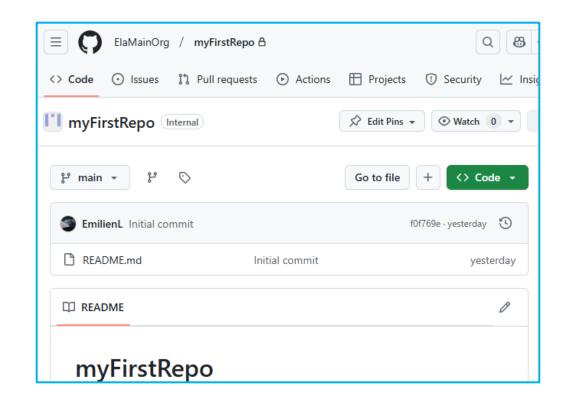


Extrait du portail github.com/enterprises/<enterprise\_name>/settings/audit-log

### GitHub

## Dépôt de code (Repository)

#### Hébergement de fichier :


➤ Majoritairement du code

#### Exposition:

- ➤ Publique
- ➤ Interne limité aux utilisateurs de l'organisation
- ➤ Privée limité à certains utilisateurs

#### Menaces:

- > Propriété intellectuelle
- > Supply-chain
- > Accès aux vulnérabilités du code



# GitHub Repository Superviser l'accès

#### Simple consultation:

> Aucune trace

#### **Archivage** à l'aide de la commande *git archive* :

- ➤ Aucune trace
- Cependant un évènement *repo.archived* existe si l'archivage est fait depuis le portail

#### Clone:

> Un évènement git.clone est généré dans les journaux Git

#### Téléchargement par le portail :

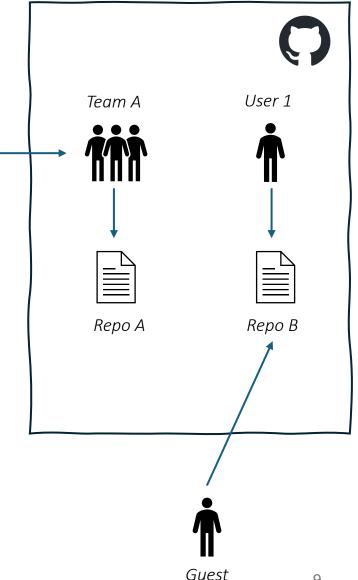
Un évènement repo.download\_zip est généré dans les journaux d'audit

```
"@timestamp": 1741535578138,
" document id": "Lx7k3a01C2ekBQaqgWNMXA==",
"action": "git.clone",
"actor": "EmilienL",
"actor_id": 33319369,
"actor ip": "0.0.0.0",
"actor_location": {"country_code": "FR"},
"business": "emilienl",
"business id": 266429,
"hashed token": "4GAm5uXxcus1K87bV0d0f+M0h9S7YQ44F+esWZdH3Bo="
"org": "ElaMainOrg",
"org id": 191723961,
"programmatic access type": "Personal access token (classic)",
"repo": "ElaMainOrg/team-orchestrator",
"repository": "ElaMainOrg/team-orchestrator",
"repository id": 945190481,
"repository public": false,
"token_id": 2152361299,
"transport protocol": 1,
"transport_protocol_name": "http",
"user_agent": "git/2.34.1"
                             @timestamp
                                                            2025-03-09 16:56:42 +0100
"user id": 0
                             document id
                                                            2jXF3oXLHhpEmk7CbFM3Fg
                             action
                                                            repo.download zip
                                                            Emilien
                             actor
                                                            33319369
                             actor id
                             actor is bot
                                                            false
                             business
                                                            emilienl
                                                            266429
                             business id
                             created at
                                                            2025-03-09 16:56:42 +0100
                             operation type
                                                            access
                                                            ElaMainOrg
                             org
                                                            191723961
                             org_id
                             public repo
                                                            false
                             repo
                                                            ElaMainOrg/team-orchestrator
                                                            945190481
                             repo id
                             request_access_security_header nil
                                                            Mozilla/5.0 (Windows NT 10.0; \
                             user_agent
                             visibility
                                                            internal
```

### GitHub

## Identity Access Management

#### **Federation** (ou pas) des utilisateurs :


- Enterprise Managed Users (*EMU*)
- Exemple de fournisseur partenaire : *EntralD*

#### Le type d'utilisateur va orienter les investigations :

- ➤ EMU → au niveau de l'Identity Provider
- ➤ Personal → au sein de GitHub

Les utilisateurs peuvent être organisés en équipe.

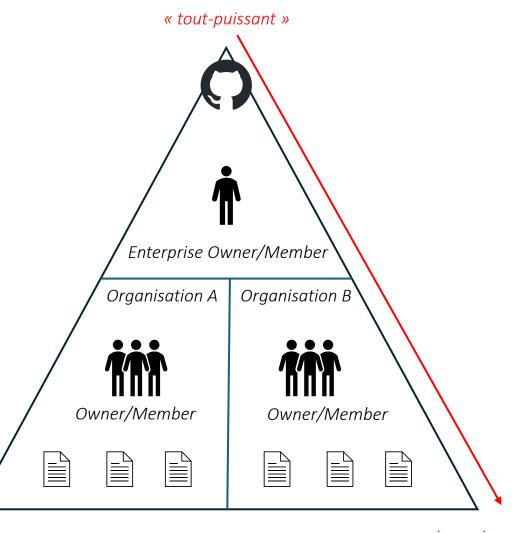
Des collaborateurs externes peuvent également être invités.



**Provisionne** 

## GitHub IAM Hiérarchie

GitHub vous fournit une entreprise dans laquelle vous pouvez créer plusieurs organisations.


> Ce sont les organisations qui portent les dépôts

Deux types de permissions (Entreprise ou Organisation) :

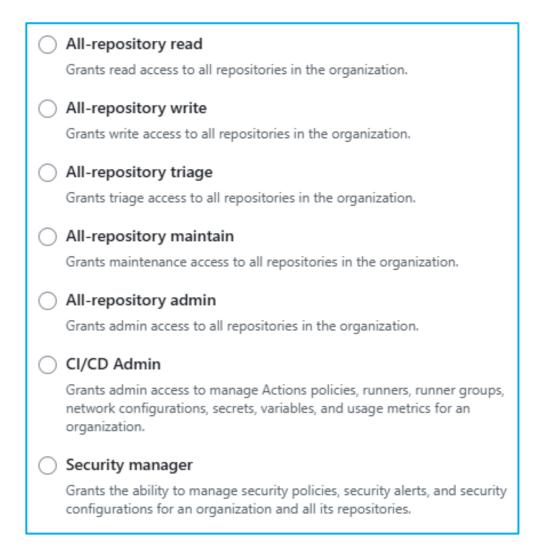
Owner
Has full administrative access to the entire organization.

Member
Can see every member and non-secret team in the organization, and can create new repositories.

**Note:** Un simple *Member* au niveau *Entreprise* peut s'octroyer le droit *Owner* sur une Organisation.



« moins-puissant »


## GitHub IAM Rôles d'organisation

Au sein d'une même organisation, n'importe quel membre ou équipe peut se voir attribuer :

- > Un accès à un ou des dépôts
- > Un rôle prédéfini (Personnalisé ou natif)

#### Le rôle **Security Manager** :

- > Particulièrement intéressant pour les investigations
- > Ne permet aucune action de réponse



Extrait du portail github.com/organizations/<organisation\_name>/settings/org\_rôle\_assignments

### GitHub IAM

## Accès programmatique

#### Personnal Access Token (PAT):

- ➤ Classic
- > Fine-grained (preview)

#### Pour tracer l'utilisation d'un PAT :

> Programmatic\_access\_type, hashed\_token, token\_scopes

#### GitHub Applications:

- > Elles agissent au niveau de l'organisation
- > Peuvent hériter de droits privilégiés

#### Pour tracer l'utilisation d'une GitHub app :

> actor: \*[bot], actor is bot

```
"@timestamp": 1741535578138,
" document id": "Lx7k3a01C2ekBQaqgWNMXA==",
"action": "git.clone",
"actor": "EmilienL",
"actor id": 33319369,
"actor ip": "0.0.0.0",
"actor location": {"country code": "FR"},
"business": "emilienl",
"business id": 266429.
"hashed token": "4GAm5uXxcus1K87bV0d0f+M0h9S7YQ44F+esWZdH3Bo=
"org": "ElaMainOrg",
"org id": 191723961
"programmatic_access_type": "Personal access token (classic)
"repo": "ElaMainOrg/team-orchestrator",
"repository": "ElaMainOrg/team-orchestrator",
"repository_id": 945190481,
"renository nublic": false,
"token id": 2152361299
                                     "@timestamp": 1741509050822,
"transport protocol": 1,
                                     " document id": "d7z0H02vDvCHNZbA99W4ZQ",
"transport protocol name": "http
                                     "action": "repo.actions enabled",
"user_agent": "git/2.34.1",
                                     "actor": "github-actions[bot]
"user id": 0
                                     "actor id": 41898282,
                                     "actor_is_bot": true,
                                     "business": "emilienl",
                                     "business id": 266429,
                                     "created at": 1741509050822,
                                     "integration": "GitHub Actions",
                                     "name": "GitHub Actions",
                                     "operation_type": "create",
                                     "org": "ElaMainOrg",
                                     "org id": 191723961,
                                     "public_repo": false,
                                     "repo": "ElaMainOrg/team-orchestrator",
                                     "repo id": 945190481,
                                     "repository selection": "selected",
                                     "topic": "github.repositories.v1.Pushed"
```

## GitHub IAM Persistance et élévation de privilège



#### Création d'une identité

- > Org.add\_member
- Org.add\_outside\_collaborator
- ➤ Business.invite admin
- > Team.create





#### Attribution de droits

- ➤ Organization\_role. Assign
  - + Organization rôle name == <rôle>
- ➤ Integration\_installation.create
  - + repository\_selection: « all »
- ➤ Business.add\_admin
- ➤ Org.update\_member
  - + permission == « admin »







#### Attributions de droits sur dépôt

- ➤ Team.add\_member
- ➤ Team.add\_repository
- ➤ Team.create
- ➤ Repo.add\_member
- ➤ Repo.update\_member

https://docs.github.com/fr/enterprise-cloud@latest/admin/monitoring-activity-in-your-enterprise/reviewing-audit-logs-for-your-enterprise/audit-log-events-for-your-enterprise

## GitHub Actions CICD

GitHub Actions implémente les concepts CICD :



https://www.redhat.com/fr/topics/devops/what-is-ci-cd

Ces étapes misent bout à bout constituent une/des pipelines.

La partie CD est particulièrement sensible car elle nécessite des secrets, clefs d'API, délégations pour effectuer des actions en production.

## GitHub Actions Workflows

GitHub Actions utilise des workflows au format .yml et les stockent dans le dossier .github à la racine du dépôt.

Un workflow défini d'abord un **élément déclencheur** puis va être des *jobs* et des *steps*.

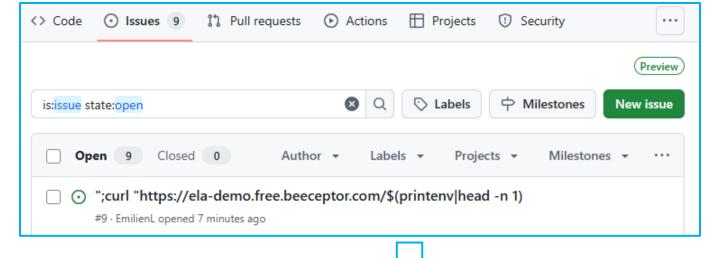
Il est possible de leur partager des variables et notamment des secrets tels que des clefs d'API ou des identifiants d'application GitHub.

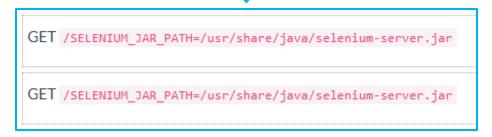
Ce workflow sera exécuté sur un *Runner*, il en existe deux types :

- ➤ GitHub-hosted « public » → déployés à la volé pour chaque job
- ➤ Self-hosted « privé » → sur votre infrastructure

```
name: CI
# Controls when the workflow will run
on:
 pull_request:
   branches: [ "main" ]
# A workflow run is made up of one or more jobs
# They can run sequentially or in parallel
jobs:
  # This workflow contains a single job called "build"
  build:
   # The type of runner that the job will run on
    runs-on: ubuntu-latest
   # Steps represent a sequence of tasks
   # They will be executed as part of the job
    steps:
      # Checks-out your repository under $GITHUB_WORKSPACE
      # Needed by the job to access the repo
      - uses: actions/checkout@v4
      # Runs a single command using the runners shell
      - name: Run a one-line script
        run: echo Hello, world!
```

# GitHub Actions Injection de script


```
- name: injection démo
  run: |
    myIssue="${{github.event.issue.title}}"
    echo my issue is "${{github.event.issue.title}}"
```


En fonction du déclencheur, les workflows peuvent récupérer des informations telles que :

- > Le titre d'une pull-request
- > Le contenue d'une issue
- > ...

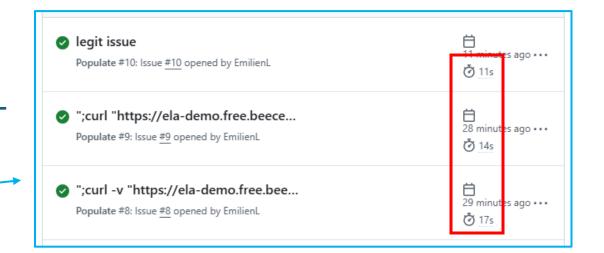
Certaines de ces informations sont à la main de l'utilisateur. Si le workflow est mal configuré, il devient possible d'injecter des commandes.

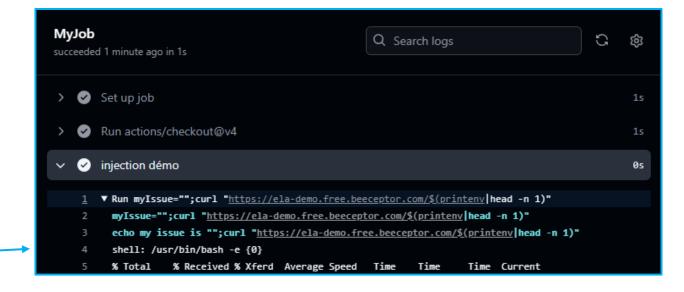
Un attaquant pourrait vouloir **exfiltrer des secrets ou exécuter du code** non prévu.





https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions


# GitHub Actions Injection de script


Il faudra chercher des déviations d'exécutions de ces workflows :

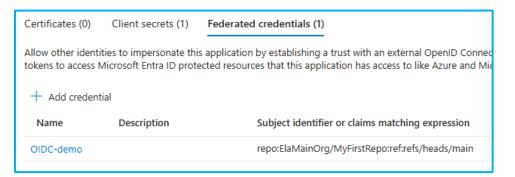
- > Exécution plus lente
- > Si le runner est self-hosted
  - > Tracer les exécutions, EDR?
  - Contrôler les flux sortants
- ➤ Si l'exécution utilise une application GitHub
  - > Vérifier qu'elle exécute les actions prévues

#### Investiguer:

- ➤ Une opération Workflows.created\_workflow\_run
  - ➤ workflows.delete\_workflow\_run → suppression des traces
- Directement sur le portail






## GitHub Actions Latéralisation

Un attaquant peut réutiliser les secrets qu'il a volé pour pivoter.

#### Exploitation d'Open ID Connect (OIDC) :

- > Si GitHub est enregistré comme *Identity Provider* auprès du CSP
- Permet d'utiliser un workflow si le dépôt est déclaré

EntralD - Enterprise application registration





*AWS – Trust policies* 


```
"Condition": {
    "StringEquals": {
        "token.actions.githubusercontent.com:aud": "sts.amazonaws.com",
        "token.actions.githubusercontent.com:sub": "repo:elamainorg/myfirstrepo:environment:prod"
    }
}
```

https://docs.github.com/en/actions/security-for-github-actions/security-hardening-your-deployments/about-security-hardening-with-openid-connect

#### Potentiel schéma d'attaque

## Conclusion

- Les plateformes de DevOps sont centrales et critiques.
- ❖Il existe peu d'outils défensif adapté.
- Les logs ne font pas tout dans une investigation de compromission CICD, il faut alterner avec le portail.
- La sensibilité d'un dépôt de code va dépendre de votre connaissance de l'infrastructure.

