SECURITY

By Didier BERNAUDEAU

OSSIR (January 9th, 2018)

DISCLAIMER

| don't speak on behalf of my employer.

The information and perspective that | present are personal and don't
represent those of my employer.

This presentation is the result of my personal researches and
experimentation.

CHAPTER 1

THE REVELATION

BOB

Works for Cash Register Unlimited
Company (since 2003)

In charge of Application Security
70 projects per year

200 applications

.2

SOFTWARE DEVELOPMENT LIFE CYCLE

[Resiconents]
L) Ebe.si gﬂ
L>C5-°:‘€?l
b[Fesh)
o)

SECURE SDLC

[Requirenert<]
L) Ebe.si gﬂ
L>C5-°:‘€?l
b[Fesh)
o)

EVERYTHING ALL RIGHT!

3.

UNTIL THE DAY OF ...

- Alice: Hi Bob! Are there security issues regarding email sending?

- Bob: Maybe, what is data?

- Alice: For instance, banking data (PAN, IBAN, ...)

- Bob: In this case, | must analyse your project. What is the deadline?

- Alice: This is already in production 2 weeks ago!

- Bob: Oh! How is it possible? without security validation? Without security acceptance testing?

- Alice: Well ... we use Agile Methogology!

3.

6

AGILE ???

e Manifesto for Agile Software
Development (February 2001)

e Scrum / Kanban
e Cash Register Unlimited Company

has implemented Agile SDLC
since 2013

T

CHAPTER 2

BECOME AN AGILE SECURITY OFFICER

PRODUCT THINKING

No Project

No Application

PRODUCT OWNER

e PO isthe only person responsible
for managing the Product
Backlog.

e PO have a lot of stakeholders to
take into account

Alice is the Product Owner of "Cash Register 2.0"

4.

PRODUCT BACKLOG

e |tis a prioritized inventory of work to be done.

e Type of Product Backlog Item (PBI) :
= Features (User Stories)
= Non-Functional Requirement
n Defects (Bug Stories)
= Refactoring

USER STORIES

Security features:

As seller, | want to change my password on the Cash Register

Acceptance Criteria:

The password is at least 8 characters. The password contains a character
from each of the following groups: Lower case alphabet, Upper case
alphabet, Numbers Special Characters (|, @,#,5,%,",&,*)

4.

SECURITY-FOCUSED STORIES

e Approach introduced by Safe Code
e Away to include non-functionnal requirement in the backlog

Example: As developer, | want to verify that sensitive data is kept restricted
to actors authorized to access it.

4.

http://safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf

EVIL USER STORIES

aka "Abuser Stories"

e Approach introduced by OWASP
e Using Personas: Insider Hacker, Professional hackers, Script kiddie, ...

Example: As a hacker, | can modify the price of an article.

https://www.owasp.org/index.php/Agile_Software_Development:_Don%27t_Forget_EVIL_User_Stories

SECURITY IN PRODUCT BACKLOG

e User Stories with acceptance criteria
e Security-focused stories (NFR)
e Evil user Stories

DEFINITION OF DONE

List of activities to validate each item in the Product Backlog.

Example of secure activity: There should be no open critical and high
vulnerability identified by Source Code Analysis

4.

SPRINT

Pail
@

Sceum
Maslter

Product
lnccement:

.10

MINIMAL PRODUCT

Minimal Viable Product (MVP)

Product which allows a team to test an ideas with the least effort.

Minimal Marketable Product (MMP)

Product with the smallest possible feature set that addresses the needs of the initial users.

.1

CHAPTER 3

SECURITY IN SPRINT PHASES

SPRINT PHASES

1. Code
2. Test
3. Deploy

PHASE 1 # CODE

COWBOY CODING

e Prevent "cowboy" development:

» Define allowed frameworks
= Define security guideline for each framework
= Change management

e |dentify framework with known

vulnerabilities:

= Artifact repository: JFrog X-Ray, BlackDuck Hub, ...
= Build: Dependency Check / RetiredS

.4

MICROSERVICE

e Best agile software architecture

e 2 parts:
= Front End (WebApp / MobileApp)
= Back End (MicroService)

5.

5

SECURING MICROSERVICE

e Front End (WebApp):
= Linter (ESlint Security)
= Minify and Obfuscate (UglifyJS)

e Back End (Microservice):
s Stateless & Autoscalling
= Authentication Token (OAuth / JWT)
= HTTPS

= Privileged Orchestration pattern to Choreography

5.

6

MICROSERVICE

b" Ponbedj

LO he.sl- rator ‘\
[

API Gab&wag
v I J

®BacK £ad
- ;’j{ .

6
|

5 &

PHASE 2 # TEST

TEST-DRIVEN DEVELOPMENT

1. Start by writing an automated test case.

2. Run the test which should fail.

3. Write the minimum amount of code required to make the test pass
4, Run the tests to check the new test passes

5. Refactor the new code

Positive testing (Valid data) and Negative testing (Invalid data)

5.

9

BEHAVIOR-DRIVEN DEVELOPMENT

e Integration test
e Test are written with DSL (Domain-specific language) like Gherkin

Feature: Account Holder withdraws cash

Scenario: Account has sufficient funds
Given the account balance is $100
And the card is wvalid
And the machine contains enough money
When the Account Holder requests $20
Then the ATM should dispense $20
And the account balance should be $80
And the card should be returned

COMMON TESTING TOOLS

e Fitness

e Mockito

e Cucumber

e Selenium

e JBehave (Java)
e Behat (PHP)

e Hiptest

SECURITY TESTING TOOLS

e /AP
e Gauntlt (Be mean to your code and like it)
e BDD Security

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://gauntlt.org/
https://www.continuumsecurity.net/bdd-security/

PHASE 3 # DEPLOY

STRATEGY DEPLOYMENT

New environment for each deployment

"Blue/green" or Canary release

.14

INFRASTRUCTURE AS CODE (IAC)

e Tools: Chef, Puppet, Ansible, ...

e Test Driven Infrastructure:

» Linter: puppet-lint, Ansible lint, Foodcritic, RuboCop, ...
= Unit testing: RSpec-Puppet, ChefSpec, ...
» Acceptance testing: Beaker for puppet, Test kitchen for Chef, ...

e Network As Code (LaaS and FaaS): Neutron from RedHat

CONTAINER

Software:
= Container runtime: runC, Docker, Rocket, Garden, ...
» PAAS: OpenShift, CloudFoundry, Bluemix, ...

Secret storage: Vault from Hashicorp, Barbican from RedHat, ...
Network Overlay & Micro Segmentation

Segregate Containers by host (CoreOS)

Container vulnerabilities Scanner (Clair)

.16

CHAPTER 4

SECURE SOFTWARE SUPPLY CHAIN

SOFTWARE SUPPLY CHAIN

R —

e e N

l\ CcT /CD Sofétwace— ;l

e Staq:
ﬂod\ 3 u-\d Conksoractcn | Vv qg 3 ng\:‘::d
? ':."' Report crﬂ -’7 Hanagemenb Toels
°$l l' Gu lder K Peroduckin Hea\th
>! VH =| Chekt\
Framewark

Xebia

Enterpr

Free

Freemium

Selenium

Dh

Docker Hub

28

Jn

Jenkins

zation
boration

rity

29 30

Ba Tr

Travis CI

Deployment
|Manager

SmartFrog

Google
Cloud

43 0Os

Cj

Cucumber.js

45

(v]

a6

Cs

Codeship

47 48

Vs Cr

Visual Studio | CircleCl

48 Fr

Cp

Capistrano

50

Ju

36

Rs

Rackspace

61 Fr

Jm

64 Fm

Tc

TeamCity

65 Fm | 66

Sh Cc

Shippable CruiseControl

67 (=]

Ry

| RapidDeploy

68

Cy

CodeDeploy

54 Os

Op

OpenStack

72 Fm

Hr

Pabs

78

Km

Karma

az Os

Co

Continuum

Elasticsearch

83 Fm | 84 Pd

Ct So

Continua Cl | Solano CI

85 (=]

Xld

XL Deploy

86 (=]

EB

ElasticBox

90

Os

CpenShift

Tw

Tripwire

6.

SOME BEST PRACTICES

For securing your Software Supply Chain

e HTTPS
e Authentication
e Access Management

ANY QUESTIONS ?

vwime'at I‘ips //g? [thcﬁ ’
. " ! 2 A ‘Q ‘
» J “‘f‘, ﬂ
2 4h -y ¢ ‘- et

N -

https://git.io/vNtqD

