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Your computer 
is made of many “computers”

All of them are considered to be in our TCB.
What could happen when one is compromised?

Keyboard 
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Hard-drive

CPU microcode

Northbridge 
chipset

GPU



Goals

● It's about threat models!
● Do we care about hardware compromises?
● Is it practical, feasible?
●

● Steps:
● Reverse engineered the firmware of a disk 

– a Common Off The Shelf (COTS)  SATA disk
● Designed a backdoor 

– covertly extracts data from a host/network (i.e., exfiltrates data)
● Evaluated its impact and performance
● Discussed countermeasures



Simple example:
HDD rootkit for persistence

● Malware compromises OS
● Updates HDD firmware with malicious firmware
● Disk is formatted, OS “re-installed”
● But malicious HDD firmware remains!
● Malware compromises OS again



Problems

● How to craft a malicious firmware update?
● Reverse engineering existing firmware

● Can we create a more stealthy payload?
● Not making modifications to the host

Do it for real:
●  otherwise we would not learn much!



First part: 
Reverse engineering and modifying an HDD
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Backdooring the firmware

● Can be done easily by the manufacturer
● What about any moderately funded attackers?
● Without physical access?

● Requires:
● Reverse engineering
● Developing a payload
● Packaging a firmware update
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Diagnostic menu

● Available over serial port (M/S pins)
● 100s of diagnostic commands
● Commands available to dump RAM:

Online ^Z: Rev 0011.0000, Flash,   Enable ASCII Diagnostic Serial Port Mode

All Levels '+': Rev 0012.0000, Flash,   Peek Memory Byte, +[AddrHi],[AddrLo],[NotUsed],[NumBytes]

All Levels '-': Rev 0012.0000, Flash,   Peek Memory Word, -[AddrHi],[AddrLo],[NotUsed],[NumBytes]

All Levels '=': Rev 0011.0002, Flash,   Poke Memory Byte, =[AddrHi],[AddrLo],[Data],[Opts]
Online ^C: Rev 0011.0000, Flash,   Firmware Reset
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Reverse engineering approach

● Use serial diagnostic menu
● PEEK/POKE primitives 
● Memory dump

● Understand firmware 
● But it's very large and obscure...
● We need a way to debug the running firmware
● To hook the backdoor in the original code



13

Debugging the firmware

● No HW debug support
● No JTAG
● No HW breakpoints, watchpoints, …

● Write our own debugger stub
● Software breakpoints (bkpt instr + data abort interrupts)
● Communication with GDB over serial port

● Issues to keep the debugger in control
● Several boot stages load new code
● Debugger stub or breakpoints often overwritten
● Many crashes and reboots … 
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Finding a hooking point for the 
backdoor

● Many technical difficulties...
● Custom, event based OS 
● Large statically linked code, No symbols

● Data is transferred directly in the HDD's RAM via DMA

● Pointers are passed between different threads in the 
firmware, tracking them is difficult because the 
debugger does not allow data watchpoints

Read-write t
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Backdoor Implementation

● Backdoor inserted in a firmware update
● Intercepts disk writes
● Can read blocks from disk (unstable*)
● No significant overhead (1%)

* Quality control is left as an exercise for 3 letters agencies



  
Second part: 

A remote data exfiltration payload



Exfiltration exemple: an online forum 
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Web forum 
comments

 Web data  
 User data stored comments 
 System data (passwords)

Backdoor installed:
 While shipping the disk 
 By malware
 Compromised FW update…
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M|C|?|...|?

Initial idea

M|C|?|?|?|?

M|C|?|?|?|?HDR

One block

Alignment issue
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M|C|?|?|?|?|

Improvement

M|C|?|?|?|?|HDR

One block

One full safely replaceable block

M|C|?|?|?|?

M|C|?|?|?|?

Block 1 Block 2
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M|C|M|M|M|M|

Exfiltration block format

M|C|M|M|M|M|HDR

One block

Fast check + no false-positives

M|C|M|M|M|M

M|C|M|M|M|M

Block 1 Block 2
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M|C|M|M|M|M|M|C|M|M|M|M

M|C|M|M|M|M|M|C|M|M|M|MHDR

HDR|M|C|M|M

M|M|M|C|M|M

M|M|...

HDR|M|C|M|M

EXFIL. DATA

M|M|...

M|C|M|M|EXFIL. DATA|M|MHDR M|C|M|M|EXFIL. DATA|M|M
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Other exfiltration challenges

● Format of exfiltrated data

→ Base64 encode sectors

● Caching

→ Wait, or create dummy traffic
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Evaluation

PHP-based forum

Qemu 
implementation
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Exfiltrating a sensitive file

● Use HDD as remote block device
● Exfiltrate /etc/shadow in nine “queries”:

● First retrieve partition table in MBR
● Then superblock of ext3 partition
● …

● Total time: < 1 minute
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Countermeasures

● Encryption of data-at-rest
● Works under some (uncommon) conditions

● Signed firmware updates
● Helps, however: 

– Physical attacks
– Manufacturer compromise
– Vulnerabilities in code allowing run-time modifications

● Firmware integrity verification
● e.g., use ROM code as root of trust
● Secure boot

● Page-cache driven integrity checks
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Conclusion

● RE-ed and compromised a COTS drive
● 10 person-month effort
● No significant performance overhead

● Data-exfiltration backdoor
● No cooperation from host
● Stealthy

● So is this realistic ?
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Lesson learnt

●We need to trust all those embedded devices…
● But we can’t!

●Performing security analysis of embedded 
systems is very challenging !

● Very hard to analyze the disk
● Static v/s Dynamic analysis

●We need to develop new methodologies and 
tools for dynamic security analysis of embedded 
systems
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Future Work

● This work is also an excuse to 
● Identify challenges in performing security analysis 

of embedded systems 
● Develop new methodologies and tools for dynamic 

security analysis of embedded systems 
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Future Work

● A first result is already available:
● AVATAR: A Framework to Support Dynamic 

Security Analysis of Embedded Systems' Firmwares

Jonas Zaddach, Luca Bruno, Aurélien Francillon, 
Davide Balzarotti (NDSS'14)

http://www.s3.eurecom.fr/tools/avatar/

http://www.s3.eurecom.fr/tools/avatar/
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Questions?

Kind thanks are due to those hard disks
who valiantly gave their lives

toward scientific investigation and research.


