

Implementation and Implications of
a Stealth Hard-Drive Backdoor

Anil Kurmus
Erik-Oliver Blass

Travis Goodspeed
Ioannis Koltsidas

March 3rd 2014 – OSSIR/JSSI 2014

Paper first presented at ACSAC 2013
Awarded Best Student Paper Award

Jonas Zaddach
Davide Balzarotti
Aurélien Francillon
Moitrayee Gupta

Aurélien Francillon

 Maitre de conférences a EURECOM
Depuis Sept. 2011

 Eurecom
Petite Grande école d’ingénieurs a Sophia Antipolis

Membre de l’institut mines-télécom

 2/3 d’étudiants étrangers

 Nouveau diplôme cette année
Diplôme d’ingénieur de spécialisation (CTI)

Pour ignorer cette publicité, cliquez ici [x]

Embedded systems

RFID

Sensors

SmartCards Connected devices

Industrial
systems

Your computer
is made of many “computers”

All of them are considered to be in our TCB.
What could happen when one is compromised?

Keyboard
controller

Network card

Hard-drive

CPU microcode

Northbridge
chipset

GPU

Goals

● It's about threat models!
● Do we care about hardware compromises?
● Is it practical, feasible?
●

● Steps:
● Reverse engineered the firmware of a disk

– a Common Off The Shelf (COTS) SATA disk
● Designed a backdoor

– covertly extracts data from a host/network (i.e., exfiltrates data)
● Evaluated its impact and performance
● Discussed countermeasures

Simple example:
HDD rootkit for persistence

● Malware compromises OS
● Updates HDD firmware with malicious firmware
● Disk is formatted, OS “re-installed”
● But malicious HDD firmware remains!
● Malware compromises OS again

Problems

● How to craft a malicious firmware update?
● Reverse engineering existing firmware

● Can we create a more stealthy payload?
● Not making modifications to the host

Do it for real:
● otherwise we would not learn much!

First part:
Reverse engineering and modifying an HDD

9

Backdooring the firmware

● Can be done easily by the manufacturer
● What about any moderately funded attackers?
● Without physical access?

● Requires:
● Reverse engineering
● Developing a payload
● Packaging a firmware update

Disk platters

Head
& Actuators

Controller SATA interface

M/S pins

11

Diagnostic menu

● Available over serial port (M/S pins)
● 100s of diagnostic commands
● Commands available to dump RAM:

Online ^Z: Rev 0011.0000, Flash, Enable ASCII Diagnostic Serial Port Mode

All Levels '+': Rev 0012.0000, Flash, Peek Memory Byte, +[AddrHi],[AddrLo],[NotUsed],[NumBytes]

All Levels '-': Rev 0012.0000, Flash, Peek Memory Word, -[AddrHi],[AddrLo],[NotUsed],[NumBytes]

All Levels '=': Rev 0011.0002, Flash, Poke Memory Byte, =[AddrHi],[AddrLo],[Data],[Opts]
Online ^C: Rev 0011.0000, Flash, Firmware Reset

12

Reverse engineering approach

● Use serial diagnostic menu
● PEEK/POKE primitives
● Memory dump

● Understand firmware
● But it's very large and obscure...
● We need a way to debug the running firmware
● To hook the backdoor in the original code

13

Debugging the firmware

● No HW debug support
● No JTAG
● No HW breakpoints, watchpoints, …

● Write our own debugger stub
● Software breakpoints (bkpt instr + data abort interrupts)
● Communication with GDB over serial port

● Issues to keep the debugger in control
● Several boot stages load new code
● Debugger stub or breakpoints often overwritten
● Many crashes and reboots …

14

SW controlled
relay

SATA cable

Power

Serial console

15

HDD

USB-SATA
bridge

USB
Controlled
Switch

Storage

Flash memory

On Disk

3rd Bootloader

 2nd Bootloader

System

OverlaysOverlaysOverlays

SD-RAM

Blocks
Buffering

System
Area

ASIC/Microcontroller

Internal RAM

Internal RAM

Mask ROM Bootloader

A
d

d
re

ss
 S

p
a
ce

17

Finding a hooking point for the
backdoor

● Many technical difficulties...
● Custom, event based OS
● Large statically linked code, No symbols

● Data is transferred directly in the HDD's RAM via DMA

● Pointers are passed between different threads in the
firmware, tracking them is difficult because the
debugger does not allow data watchpoints

Read-write t

18

Backdoor Implementation

● Backdoor inserted in a firmware update
● Intercepts disk writes
● Can read blocks from disk (unstable*)
● No significant overhead (1%)

* Quality control is left as an exercise for 3 letters agencies

Second part:

A remote data exfiltration payload

Exfiltration exemple: an online forum

20

Web forum
comments

 Web data
 User data stored comments
 System data (passwords)

Backdoor installed:
 While shipping the disk
 By malware
 Compromised FW update…

21

M|C|?|...|?

Initial idea

M|C|?|?|?|?

M|C|?|?|?|?HDR

One block

Alignment issue

22

M|C|?|?|?|?|

Improvement

M|C|?|?|?|?|HDR

One block

One full safely replaceable block

M|C|?|?|?|?

M|C|?|?|?|?

Block 1 Block 2

23

M|C|M|M|M|M|

Exfiltration block format

M|C|M|M|M|M|HDR

One block

Fast check + no false-positives

M|C|M|M|M|M

M|C|M|M|M|M

Block 1 Block 2

24

M|C|M|M|M|M|M|C|M|M|M|M

M|C|M|M|M|M|M|C|M|M|M|MHDR

HDR|M|C|M|M

M|M|M|C|M|M

M|M|...

HDR|M|C|M|M

EXFIL. DATA

M|M|...

M|C|M|M|EXFIL. DATA|M|MHDR M|C|M|M|EXFIL. DATA|M|M

25

Other exfiltration challenges

● Format of exfiltrated data

→ Base64 encode sectors

● Caching

→ Wait, or create dummy traffic

26

Evaluation

PHP-based forum

Qemu
implementation

27

Exfiltrating a sensitive file

● Use HDD as remote block device
● Exfiltrate /etc/shadow in nine “queries”:

● First retrieve partition table in MBR
● Then superblock of ext3 partition
● …

● Total time: < 1 minute

28

Countermeasures

● Encryption of data-at-rest
● Works under some (uncommon) conditions

● Signed firmware updates
● Helps, however:

– Physical attacks
– Manufacturer compromise
– Vulnerabilities in code allowing run-time modifications

● Firmware integrity verification
● e.g., use ROM code as root of trust
● Secure boot

● Page-cache driven integrity checks

29

Conclusion

● RE-ed and compromised a COTS drive
● 10 person-month effort
● No significant performance overhead

● Data-exfiltration backdoor
● No cooperation from host
● Stealthy

● So is this realistic ?

3/17/14 - - p 30

3/17/14 - - p 31

3/17/14 - - p 32

Lesson learnt

●We need to trust all those embedded devices…
● But we can’t!

●Performing security analysis of embedded
systems is very challenging !

● Very hard to analyze the disk
● Static v/s Dynamic analysis

●We need to develop new methodologies and
tools for dynamic security analysis of embedded
systems

34

Future Work

● This work is also an excuse to
● Identify challenges in performing security analysis

of embedded systems
● Develop new methodologies and tools for dynamic

security analysis of embedded systems

35

Future Work

● A first result is already available:
● AVATAR: A Framework to Support Dynamic

Security Analysis of Embedded Systems' Firmwares

Jonas Zaddach, Luca Bruno, Aurélien Francillon,
Davide Balzarotti (NDSS'14)

http://www.s3.eurecom.fr/tools/avatar/

http://www.s3.eurecom.fr/tools/avatar/

36

Questions?

Kind thanks are due to those hard disks
who valiantly gave their lives

toward scientific investigation and research.

