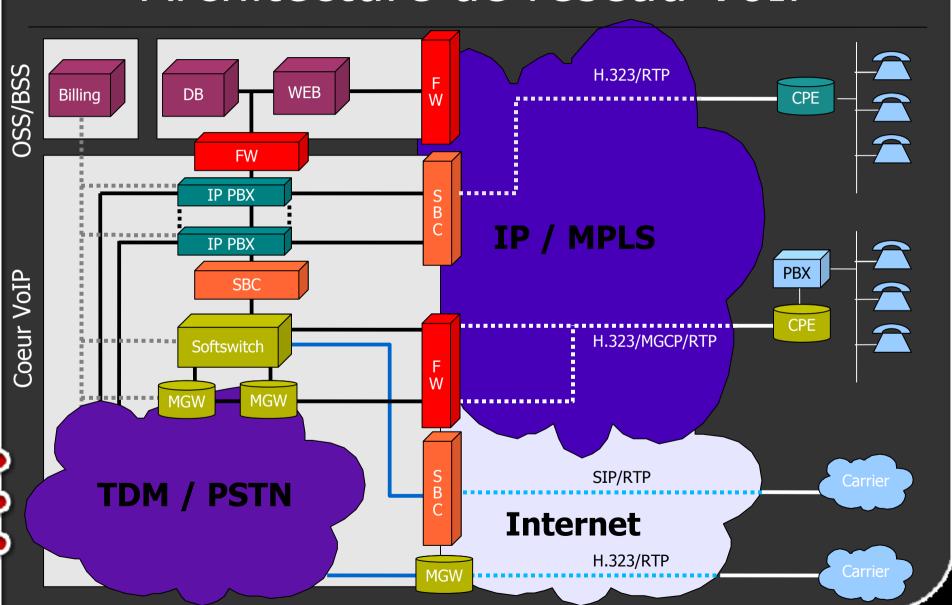
Sécurité de la VoIP chez un opérateur

Nicolas FISCHBACH

JSSI 2006

Senior Manager, Network Engineering Security, COLT Telecomnico@securite.org - http://www.securite.org/nico/


COLT et la VoIP

- COLT Telecom
 - Services Managés, Voix et Données. FAI "Tier1" en EU
 - 14 pays, 60 villes, 50k clients business
 - 20 000 km de fibre en Europe + DSL
- "Expérience" VoIP
 - 3 vendeurs majeurs:
 - Un "nous venons du monde TDM"
 - Un "nous venons du monde IP"
 - Un "nous sommes une société spécialisée VoIP"
 - VoIP via de l'accès Internet et des VPN MPLS
 - Réseau propre (fibre + DSL) et wDSL
 - Futur PacketCore + NGN + IMS

Architecture de réseau VoIP

Protocoles VoIP

- H.323
 - ITU, ASN.1, CPE/Téléphone<->Gatekeeper
 - H.225/RAS (1719/UDP) pour l'enregistrement
 - H.225/Q.931 (1720/TCP) pour la signalisation d'appel
 - H.245 (>1024/TCP ou via le canal de signalisation d'appel) pour la gestion de l'appel
- MGCP (Media Gateway Control Protocol)
 - IETF, Softswitch (CallAgent) <-> MediaGateWay
 - CallAgents->MGW (2427/UDP)
 - MGW->CallAgents (2727/UDP)
 - Utilisé pour contrôler les MGWs
 - AoC (Advise Of Charge) en direction du CPE

Protocoles VoIP

SIP

- IETF, "ressemble" à HTTP
- Voir http://www.securite.org/presentations/voip/ EUROSEC2005-SecuriteVoIP-PB-NF-v1.{ppt,pdf}
- RTP
 - Flux multimédia (un dans chaque direction)
 - RTCP: protocole de contrôle pour RTP
 - SRTP: Secure RTP (avec MiKEY)
 - Généralement 16000+/UDP ou plage NAT, mais tout UDP>1024 est possible
 - Soit UA<->UA (risque de fraude),
 soit UA<->MGW<->UA

Session Border Controller

- Quel est le rôle d'un SBC ?
 - Securité
 - Hosted NAT traversal (mise en conformité de l'en-tête IP et de la signalisation)
 - Convertir la signalisation
 - Convertir le flux multimédia (CODEC)
 - Autoriser RTP de manière dynamique
- Il peut être localisé à différents endroits: client/opérateur, au sein du réseau client, à l'interface entre deux opérateurs (Peering VoIP)
- Que peut-on réaliser avec un pare-feu applicatif?
- Que peut-on réaliser au niveau système?
- Existe-t-il un besoin pour un NIDS VoIP (ex: si SIP-TLS)?

Equipement VoIP

- Combinaison matériel+logiciel (surtout des DSPs)
 - Softswitch: généralement dédié à la signalisation
 - MGW (Media Gateway): RTP<->TDM, SS7oIP<->SS7
 - IP-PBX: Softswitch+MGW
- Systèmes d'exploitation
 - OS temps réel (QNX/Neutrino, VxWorks, RTLinux)
 - Windows
 - Linux, Solaris
- Sécurisation par défaut souvent quasi inexistante
- Gestion des mises-à-jour:
 - Les OS sont rarement à jour
 - Les mises-à-jour ne sont pas "autorisées"

Sécurité VoIP: challenges

- Protocoles VoIP
 - La VoIP ne se limite pas à SIP
 - SIP est porteur (services IMS et nouveaux CPEs)
 - H.323 et MGCP dominent le monde des opérateurs
- Quelles problématiques ?
 - Les dialectes VoIP
 - Il existe que quelques piles VoIP (OEM/vulnérabilités)
 - Les pare-feux et SBCs résolvent-ils des problèmes ou introduisent-ils de la complexité ?
 - Créons-nous des portes dérobées dans les réseaux de nos clients ?
 - CPS et QoS

Impact des dialectes VoIP

- Impossible de sécuriser le traffic (tout particulièrement sans gestion de session) en fonction de l'inspection du protocole de signalisation
- Certains vendeurs n'ont jamais entendu parler de gestion de timeouts et n'envoient pas de keep-alives
- Résultat :
 - Intelligent:
 permit UDP <plage de ports> <systèmes identifiés>
 - A moitié: permit UDP <ports>1024> any
 - Pas du tout: permit UDP any any
- Résultat final :
 - Compromission via des services UDP exposés
 - Besoin de services RPC (>1024/UDP) ?

Interception (légale) de trafic

- Lawful Intercept
 - Réutilisation de solutions existantes: TDM break-out
 - Déployer un sniffer (flux signalisation et média)
 - Rerouter les appels (en le masquant dans la signalisation)
- Interception/Ecoute
 - Risque faible (réseau propre)
 - Réseau d'entreprise : stratégie globale
 - E-mail en clair
 - Protocoles non chiffrés (HTTP, Telnet, etc)
 - VoIP non chiffrée
 - Etc
 - vomit, YLTI, VOIPONG, scapy (VoIPoWLAN) : relativement facile de démontrer l'insécurité

Les téléphones

- Faire "planter" des téléphones IP
 - Ce n'est pas une nouvelle :)
 - Relativement facile (pile TCP/IP peu résistante et implémentations pleines de failles)
 - Attaquant interne:
 - Serveur DHCP
 - Serveur TFTP (configuration du téléphone)
 - Identifiants (login + PIN)
- La VoIP n'implique pas une migration vers des IPPhones
 - PBX avec une E1 (PRI/BRI) avec le routeur puis VoIP
 - PBX avec une interface IP vers le monde extérieur (est-ce sérieux de connecter son PBX à l'Internet) ?
 - Implique de maintenir deux réseaux, mais solution pour la QoS sur le LAN
 - Et les clients logiciels ?

A tenter à la maison :)

- Beaucoup de téléphones avec PoE
- Echange CDP: VLAN + information PoE
- Que se passerait-il avec un vers qui dirait au commutateur d'envoyer 48V à une interface Ethernet non PoE ?

Risque de déni de service

- DDoS génériques
 - Pas vraiment un problème, notre coeur VoIP n'est pas atteignable depuis l'extérieur
 - Eviter des ACLs, préférer "edge-only BGP blackholing"
 - Nous avons l'habitude des "gros" DDoS:)
- Les dénis de services plus problématiques:
 - Générés par les clients: bonne traçabilité
 - DoS applicatif: H.323 / MGCP / SIP
 - Remplacer le CPE / utiliser un client logiciel
 - Injecter du bruit dans la signalisation en-bande (commandes MGCP, messages TKIPs H323, etc)
 - Forcer la machine d'état du mécanisme d'inspection dans un état instable ou bloquant: par chance pour les adresses serveurs et non le client

La sécurité applicative

- Services en ligne
 - Call Management (console opérateur)
 - IN routing
 - Reporting / CDRs
- Risques de sécurité
 - Fonctionnalités "Multi-tenant"
 - Beaucoup de vendeurs n'ont jamais entendu parler de sécurité applicative
 - Pourquoi tenter de sécuriser ou de déployer des plates-formes d'interception légale si un gamin peut rerouter vos appels par injection SQL
- Réel besoin de pare-feux pour applications web

Sécurité VoIP: deux mondes

- TDM / VoIP : deux mondes, deux royaumes, un futur ?
 - Sécurité par obscurité / complexité vs le monde IP
 - Détection de fraude
- Nouveaux risques
 - Nouvelle surface d'attaque pour les réseaux historiques
 - Pas de fonctionnalités de sécurité dans les vieux commutateurs
 - Pas de journaux, pas de fonctions d'audit, plus de lignes physiques
 - Les gens: Voice Engineers vs Data Engineers vs
 Security engineers. Engineering vs Operations.
 Marketing vs Engineering. Conflits et Time-to-Market

Attaquer les NMS/Opérations

- La VoIP est très complexe
- Le seul moyen de résoudre la majorité des problèmes: ingénieur Voix + ingénieur IP/Données + ingénieur
 Sécurité sur le même pont téléphonique / chat en ligne
- Pré-requis: pouvoir sniffer le trafic
- Outil: Ethereal (ou équivalent)
- Attaquant: utiliser une faille dans un des décodeurs
- Sniffer sur port mirroir en R/O dans une DMZ dédiée avec uniquement VNC/SSH
- Si l'attaquant arrive à télécharger un rootkit via RTP: offrez lui un poste d'administrateur système ;-))

Sécurité VoIP entre opérateurs

- Aka "VoIP peering" / Carrier interconnect
- Existe déjà (connectivité TDM pour des opérateurs VoIP/Skype{In, Out})
- Connectivité: Internet, IX (public/private), VPN MPLS ou VPLS (Ethernet)
- Pas de service VPN MPLS de bout-en-bout, pensez à "casser" le VPN et utiliser une interface IP-IP
- Masquez votre infrastructure (topology hiding), utilisez le {white, black}listing et vérifiez que seul l'autre opérateur peut s'interfacer avec vous
- Conversion de la signalisation et du flux multimédia (SBC)

Chiffrement / Authenfication

- Devons nous l'introduire ?
- Vendeur X: "Compliant". Bien sûr.
- Vendeur Y: "C'est sur notre roadmap". Q1Y31337 ?
- Vendeur Z: "Pourquoi en avez-vous besoin ?". Hmmm...
- IPsec entre le CPE et le coeur VoIP
 - Envisageable (CPE avec CPU récente ou carte de chiffrement)
 - Comment traiter le traffic RTP CPE<->CPE ?
 - RTT reste correct et dans la fenêtre de gestion d'écho
- Solution plus probable: nomade <- IPsec -> coeur VoIP
 - L'attaquant ne peut se focaliser que sur le VPNC
 - Pas d'impact sur les clients connectés directement

Futur : Services IMS

- IMS = IP Multimedia Subsystem
- (Mauvais) souvenir: les opérateurs GSM et leurs réseaux WAP et 3G
- Très/trop ouverts (le téléphone est considéré sûr)
- Interconnexion avec leur réseau interne voire IT
- Services IMS avec les MVNOs, 3G/4G: architecture d'une complexité incroyable avec beaucoup d'interfaces
- Mise en place de pare-feux: complexe voire impossible

Sécurité VoIP chez un opérateur

- Conclusion
- Q&R

